ST-P3:端到端时空特征学习的自动驾驶视觉方法
arXiv论文“ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning“,22年7月,作者来自上海交大、上海AI实验室、加州圣地亚哥分校和京东公司的北京研究院。
提出一种时空特征学习方案,可以同时为感知、预测和规划任务提供一组更具代表性的特征,称为ST-P3。具体而言,提出一种以自车为中心对齐(egocentric-aligned)的累积技术,在感知BEV转换之前保留3-D空间中的几何信息;作者设计一种双路(dual pathway )模型,将过去的运动变化考虑在内,用于未来的预测;引入一个基于时域的细化单元,补偿为规划的基于视觉元素识别。源代码、模型和协议详细信息开源https://github.com/OpenPerceptionX/ST-P3.
开创性的LSS方法从多视图摄像机中提取透视特征,通过深度估计将其提升到3D,并融合到BEV空间。两个视图之间的特征转换,其潜深度预测至关重要。
将二维平面信息提升到三维需要附加维度,即适合三维几何自主驾驶任务的深度。为了进一步改进特征表示,自然要将时域信息合并到框架中,因为大多数场景的任务是视频源。
如图描述ST- P3总体框架:具体来说,给定一组周围的摄像机视频,将其输入主干生成初步的前视图特征。执行辅助深度估计将2D特征转换到3D空间。以自车为中心对齐累积方案,首先将过去的特征对齐到当前视图坐标系。然后在三维空间中聚合当前和过去的特征,在转换到BEV表示之前保留几何信息。除了常用的预测时域模型外,通过构建第二条路径来解释过去的运动变化,性能得到进一步提升。这种双路径建模确保了更强的特征表示,推断未来的语义结果。为了实现轨迹规划的最终目标,整合网络早期的特征先验知识。设计了一个细化模块,在不存在高清地图的情况下,借助高级命令生成最终轨迹。
如图是感知的以自我为中心对齐累计方法。(a) 利用深度估计将当前时间戳处的特征提升到3D,并在对齐后合并到BEV特征;(b-c)将先前帧的3D特征与当前帧视图对齐,并与所有过去和当前状态融合,从而增强特征表示。
如图是用于预测的双路模型:(i) 潜码是来自特征图的分布;(ii iii)路a结合了不确定性分布,指示未来的多模态,而路b从过去的变化中学习,有助于路a的信息进行补偿。
作为最终目标,需要规划一条安全舒适的轨迹,到达目标点。这个运动规划器对一组不同的轨迹进行采样,并选择一个最小化学习成本函数的轨迹。然而,通过一个时域模型来整合目标(target)点和交通灯的信息,加上额外的优化步骤。
如图是为规划的先验知识集成和细化:总体成本图包括两个子成本。使用前视特征进一步重新定义最小成本轨迹,从摄像机输入中聚合基于视觉的信息。
惩罚具有较大横向加速度、急动或曲率的轨迹。希望这条轨迹能够有效地到达目的地,因此向前推进的轨迹将奖励。然而,上述成本项不包含通常由路线地图提供的目标(target)信息。采用高级命令,包括前进、左转和右转,并且只根据相应的命令评估轨迹。
此外,交通信号灯对SDV至关重要,通过GRU网络优化轨迹。用编码器模块的前摄像头特征初始化隐藏状态,并用成本项的每个采样点作为输入。
实验结果如下:
以上是ST-P3:端到端时空特征学习的自动驾驶视觉方法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

StableDiffusion3的论文终于来了!这个模型于两周前发布,采用了与Sora相同的DiT(DiffusionTransformer)架构,一经发布就引起了不小的轰动。与之前版本相比,StableDiffusion3生成的图质量有了显着提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。 StabilityAI指出,StableDiffusion3是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显着降低了使用AI

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

原标题:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving论文链接:https://arxiv.org/pdf/2402.02519.pdf代码链接:https://github.com/HKUST-Aerial-Robotics/SIMPL作者单位:香港科技大学大疆论文思路:本文提出了一种用于自动驾驶车辆的简单高效的运动预测基线(SIMPL)。与传统的以代理为中心(agent-cent

最近一个月由于众所周知的一些原因,非常密集地和行业内的各种老师同学进行了交流。交流中必不可免的一个话题自然是端到端与火爆的特斯拉FSDV12。想借此机会,整理一下在当下这个时刻的一些想法和观点,供大家参考和讨论。如何定义端到端的自动驾驶系统,应该期望端到端解决什么问题?按照最传统的定义,端到端的系统指的是一套系统,输入传感器的原始信息,直接输出任务关心的变量。例如,在图像识别中,CNN相对于传统的特征提取器+分类器的方法就可以称之为端到端。在自动驾驶任务中,输入各种传感器的数据(相机/LiDAR

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP
