目录
什么是边缘人工智能
边缘计算与云计算
边缘人工智能:将云带到边缘以发展物联网
边缘人工智能的好处
1、减少延迟
2、降低带宽需求和成本
3、提高数据安全性
4、提高可靠性
为什么边缘AI很重要
边缘人工智能改变我们的生活方式
边缘人工智使人工智能价格亲民
边缘人工智能挑战我们的思维方式
首页 科技周边 人工智能 什么是边缘人工智能 如何实现边缘人工智能

什么是边缘人工智能 如何实现边缘人工智能

Apr 09, 2023 pm 06:31 PM
机器学习 边缘人工智能

Edge AI是边缘人工智能的缩写,它是物联网系统的下一个发展前沿,那么,什么是边缘人工智能?如何实现边缘人工智能?下面跟着小编一起去阅读本文吧!

什么是边缘人工智能 如何实现边缘人工智能

什么是边缘人工智能

简单来说,边缘人工智能是指以直接在边缘设备上运行的机器学习算法的形式使用人工智能。机器学习是一个广泛的领域,近年来取得了巨大的进步。它所基于的原则是,计算机可以通过从数据中学习来自主提高自己在给定任务上的性能,有时甚至超出了人类的能力。

如今,机器学习可以执行许多高级任务,包括但不限于:

● 计算机视觉:图像分类、目标检测、语义分割。

● 语音识别、自然语言处理、聊天机器人、翻译。

● 天气和股票市场预测、推荐系统。

● 异常检测、预测性维护。

那么机器学习已经存在这么久了,是什么让边缘人工智能突然变得如此特别?为了更好地解释这一点,让我们先看看边缘人工智能中的边缘到底是什么意思。

边缘计算与云计算

从本质上讲,边缘计算和云计算都是为了做同样的事情,也就是处理数据、运行算法等等。然而,边缘计算和云计算的根本区别在于计算实际发生的地方。

在边缘计算中,信息处理发生在现场和主动部署或边缘的分布式物联网设备上。边缘设备的一些示例,比如智能手机,以及各种微控制器。然而,在云计算中,同样的信息处理发生在集中位置,比如数据中心。

传统上,云计算主导了物联网领域。由于它由自然具有更大计算能力的数据中心提供支持,边缘的物联网设备可以简单地传输本地数据,并保持其低功耗和可承受性的关键特征。虽然云计算仍然是物联网非常重要和强大的工具,但边缘计算最近受到越来越多的关注,这是因为两个重要原因导致。

● 边缘设备上的硬件变得更强大,同时保持成本竞争力。

● 软件正日益为边缘设备优化。

这一趋势正在取得巨大的进展,现在可以在边缘计算设备上运行机器学习,而长期以来,由于高计算要求,机器学习长期以来一直被保留用于云计算!于是,边缘人工智能诞生了。

边缘人工智能:将云带到边缘以发展物联网

有了边缘人工智能,物联网设备变得越来越智能。通过机器学习,尖端设备现在能够做出决定,可以进行预测、处理复杂的数据,并管理解决方案。

例如,边缘物联网设备可以处理操作条件,预测机器是否会故障,这使得公司能够执行预测性维护,避免在完全故障的情况下产生更大的损失和成本。

另一方面,配备边缘人工智能的安全摄像头不再只捕捉视频,将能够识别人类和计算人流量。或者,通过面部识别,甚至可以准确地识别出谁通过了某个区域以及何时通过。

随着机器学习的发展,许多令人兴奋的可能性现在也将扩展到边缘设备。但这种模式转变的关键是显而易见的,为什么云计算能力比以往任何时候都更加被边缘化,这都是有原因的。

边缘人工智能的好处

1、减少延迟

在边缘处理信息最直接的好处是,不再需要在云端之间传输数据。因此,可以大大减少数据处理中的延迟。

在之前的预防性维护例子中,支持边缘人工智能的设备将能够立即响应,例如关闭受损的机器。如果我们使用云计算来执行机器学习算法,我们将在数据与云的传输过程中损失至少一秒钟的时间。虽然这听起来可能不重要,但当涉及到操作关键设备时,每一个可以实现的安全边际都是值得追求的!

2、降低带宽需求和成本

在边缘物联网设备之间传输的数据越少,网络带宽的要求也会降低,因此成本也会降低。

以图像分类任务为例。由于依赖云计算,必须将整个图像发送到在线处理。但如果用边缘计算代替,就不再需要发送该数据了。相反,我们可以简单地发送处理后的结果,它通常比原始图像小几个数量级。如果我们将这种效应乘以网络中物联网设备的数量,可能多达数千个或更多。

3、提高数据安全性

减少到外部位置的数据传输也意味着更少的开放连接和更少的网络攻击机会。这使得边缘设备安全运行,避免了潜在的拦截或数据泄露。此外,由于数据不再存储在集中式云中,因此单个违规的后果会大大减轻。

4、提高可靠性

由于边缘人工智能和边缘计算的分布式特性,操作风险也可以分布在整个网络中。从本质上讲,即使集中式云计算机或集群出现故障,各个边缘设备也能够维持其功能,因为计算过程现在独立于云端!这对于关键的物联网应用尤其重要,例如医疗保健。

为什么边缘AI很重要

虽然边缘人工智能的实际好处显而易见,但其内在影响可能更难以捉摸。

边缘人工智能改变我们的生活方式

边缘人工智能代表了将人工智能真正融入日常生活的第一波浪潮。虽然人工智能和机器学习研究已经存在了几十年,但我们现在才刚刚开始看到它们在消费产品中的实际应用。例如,自动驾驶汽车就是边缘人工智能进步的产物。边缘人工智能正在以多种方式缓慢但坚定地改变我们与环境的互动方式。

边缘人工智使人工智能价格亲民

人工智能的使用和发展不再是研究机构和大企业的专属。由于边缘人工智能被设计为在相对负担得起的边缘设备上运行,因此任何人都比以往任何时候都更容易了解人工智能的工作原理,并开发出适合自己使用的人工智能。

更重要的是,边缘人工智能使世界各地的教育工作者能够以有形的方式将人工智能和机器学习带入课堂学习。例如,通过为学生提供使用边缘设备的实践经验。

边缘人工智能挑战我们的思维方式

人们常说,人工智能和机器学习的潜力只受到人类创造力和想象力的限制,可随着机器学习变得越来越先进,许多曾经只有人类才能完成的任务将变得自动化,我们对生产力和目的的内在概念将受到严重挑战。

虽然不能确定未来会发生什么,但我对边缘人工智能带来的东西普遍持乐观态度,因为我相信它会推动我们找到更有创造性和更有成就感的工作。比如嵌入AI的边缘设备能够实时监控PPE,包括工作环境中安全帽合规性,并向任何违反PPE行为的人员发出安全和维护信号。计算机视觉与机器学习相结合,可以实现PPE合规性监控过程的自动化。

再比如人工智能集成摄像头可以缓解城市中经常阻碍交通的瓶颈和阻塞点。交通拥堵的发生主要是由于忽略了某些因素,如两辆行驶车辆之间的距离、交通灯、路牌、十字路口的行人等。智能交通系统是计算机视觉的主要应用领域,包括车辆分类、交通违章检测、交通流分析、停车场检测、车牌识别、行人检测、交通标志检测、防撞、路况监测等,以及车内驾驶员注意力检测。

通过本文,我相信大家已经懂了什么是边缘人工智能,以及它对物联网乃至人类的未来意味着什么。希望综上所述能给予各位一定的帮助。

以上是什么是边缘人工智能 如何实现边缘人工智能的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

通透!机器学习各大模型原理的深度剖析! 通透!机器学习各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

通过学习曲线识别过拟合和欠拟合 通过学习曲线识别过拟合和欠拟合 Apr 29, 2024 pm 06:50 PM

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

人工智能在太空探索和人居工程中的演变 人工智能在太空探索和人居工程中的演变 Apr 29, 2024 pm 03:25 PM

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

See all articles