人工智能和机器学习如何准备好改变数据中心运营的游戏规则?
数据中心如今面临着一个看起来几乎无法解决的挑战。虽然数据中心的运营从未如此繁忙,但作为企业碳减排目标的一部分,数据中心运营团队面临着减少能耗的压力。而且,急剧上涨的电价正在给数据中心运营商带来预算压力。
随着数据中心专注于支持人们越来越需要的工作和生活的基本技术服务,数据中心的运营如此繁重也就不足为奇了。在没有放缓迹象的推动下,人们看到与视频、存储、计算需求、智能物联网集成以及5G连接推出相关的数据使用量大幅增加。然而,尽管工作量不断增加,但不幸的是,当今许多数据中心设施的运行效率都不够高。
鉴于数据中心的平均工作寿命超过20年,这不足为奇。效率总是取决于数据中心设施的原始设计,并且基于早已被超越的预期IT负载。与此同时,变化是一个不变的因素,平台、设备设计、拓扑、功率密度和冷却要求都随着新的应用的不断发展而变化。其结果是经常发现全球各地的数据中心很难将当前和计划的IT负载与其关键基础设施相匹配。随着数据中心需求的增加,这种情况只会加剧。根据分析师的预测,从现在到2025年,数据中心的工作负载量将以每年20%左右的速度继续增长。
传统的数据中心技术和方法难以满足这些不断升级的需求。对可用性进行优先级排序在很大程度上是以牺牲效率为代价的,太多的工作仍然依赖于运营人员的经验,并且相信假设是正确的。不幸的是,有证据表明这种模式不再适用。远程传感器监控提供商EkkoSense公司的研究表明,数据中心中平均有15%的IT机架在ASHRAE的温度和湿度指南规定的范围之外运行,而由于效率低下甚至导致数据中心冷却能耗高达60%。这是一个主要问题,根据Uptime Institute估计,由于冷却和气流管理效率低下,全球数据中心浪费的能源损失约为180亿美元。这相当于浪费了大约1500亿度电。
数据中心基础设施使用的35%的能源用于冷却,很明显,传统的性能优化方法错过了实现效率提升的巨大机会。EkkoSense公司的调查表明,三分之一的计划外数据中心中断是由过热问题引发的。因此需要找到不同的方法来管理这个问题,可以为数据中心运营团队提供很好的方法来确保可用性和提高效率。
传统监控技术的局限性
不幸的是,目前只有大约5%的运维团队在每个机架上监控和报告他们的数据中心设备温度。此外,DCIM和传统监控解决方案可以提供趋势数据,并设置成在出现故障时提供警报,但这些措施还不够。它们缺乏分析能力,无法深入了解问题的原因,以及如何在未来解决和避免问题。
运营团队认识到这种传统监控技术有其局限性,但他们也知道根本没有资源和时间来获取他们拥有的数据,并从分析数据中获得有意义的见解。好消息是,现在可以使用技术解决方案来帮助数据中心解决这个问题。
现在是让数据中心与机器学习和人工智能相结合的时候了
机器学习和人工智能的应用在如何处理数据中心运营方面创造了一个新的模式。运营团队现在可以利用机器学习来收集更细粒度的数据,而不是被过多的性能数据淹没——这意味着他们可以开始实时访问数据中心的运行情况。关键是使其易于访问,使用智能3D可视化是一种很好的方法,可以让数据中心团队更轻松地在更深层次上解释性能和数据:例如显示更改和突出显示异常。
下一阶段是应用机器学习和人工智能分析来提供可行的见解。通过使用机器学习算法扩充测量数据集,数据中心团队可以立即受益于易于理解的见解,以帮助支持他们的实时优化决策。每五分钟进行一次实时粒度数据收集和人工智能/机器学习分析相结合,使运营人员不仅可以查看其数据中心设施中发生的情况,还可以找出原因,以及应该如何处理。
人工智能和机器学习支持的分析还可以揭示建议关键领域的可操作更改所需的洞察力,如最佳设定点、地板格栅布局、冷却设施操作以及风扇速度调整等。热量分析还将显示安装机架的最佳位置。而且,由于人工智能能够实现实时可视化,数据中心团队可以快速获得任何已经执行更改的即时性能反馈。
人工智能和机器学习为数据中心运营提供帮助
鉴于减少碳排放量和尽量减少电价上涨影响的压力,数据中心团队如果要实现其可靠性和效率目标,就需要新的优化支持。
利用最新的机器学习和人工智能驱动的数据中心优化方法当然可以通过减少冷却能源和使用来产生影响——在几周内即可获得立竿见影的结果。将细粒度数据置于优化计划的最前沿,数据中心团队不仅能够消除过热和电力故障风险,还能确保将冷却能耗成本和碳排放量平均降低30%。很难忽视这种成本节省可能产生的影响,尤其是在电价快速上涨的时期。如今为优化而权衡风险和可用性的日子已经一去不复返了,人工智能和机器学习技术将应用在数据中心运营的最前沿。
以上是人工智能和机器学习如何准备好改变数据中心运营的游戏规则?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

本站6月18日消息,三星半导体近日在技术博客介绍了搭载其目前最新QLC闪存(v7)的下一代数据中心级固态硬盘BM1743。▲三星QLC数据中心级固态硬盘BM1743根据TrendForce集邦咨询4月的说法,在QLC数据中心级固态硬盘领域,仅有深耕多年的三星和SK海力士旗下Solidigm在当时通过了企业客户验证。相较上代v5QLCV-NAND(本站注:三星v6V-NAND无QLC产品),三星v7QLCV-NAND闪存在堆叠层数方面几乎翻了一倍,存储密度也大幅提升。同时v7QLCV-NAND的顺

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
