自动驾驶惯性导航技术,你了解多少?
惯性导航一般集成在GPS设备中,都是由供应商集成,那在这里有什么讨论的必要呢,要知道在车辆行驶中,我们可以拿到GPS的yawrate和speed信号,而且车辆本身还有一套传感器获取yawrate和speed,又因为航迹推算是自动驾驶很重要的一部分,所以理解惯性导航的工作原理,能很好地帮助我们做基于车身的航迹推算。
惯性导航
目前GNSS+IMU构成的组合导航系统是主流的定位系统方案,惯性导航系统是唯一可以输出完备的六自由度数据的设备、数据更新频率高、是定位信息的融合中心。
惯导中使用的核心算法主要包括3种:1. 惯性导航解算算法;2. 组合导航的卡尔曼滤波器的耦合。3. 环境特征信息与惯性导航融合。
组合导航系统核心算法框架
硬件及原理
惯性导航系统(INS)是利用惯性传感器(IMU)测量载体的比力及角速度信息,结合给定的初始条件,与 GNSS等系统的信息融合,从而进行实时推算速度、位置、姿态等参数的自主式导航系统。具体来说惯性导航系统属于一种推算导航方式。即从一已知点的位置根据连续测得的运载体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。
惯性系统工作原理图
惯性导航系统采用加速度计和陀螺仪传感器来测量载体的运动参数。其中三个垂直布置的陀螺仪用于测量载体绕自身三个坐标轴的转动角速度,同时也敏感地球自转的角速度。
加速度计基于牛顿第二定律,采用电容式、压阻式或热对流原理,通过在加速过程中对质量块对应惯性力的测量来获得加速度值。用来测量运动体坐标系上各轴的加速度。
惯性系统工作原理图
惯导通过对陀螺仪测量的角速度进行积分运算和坐标变换,计算车体的姿态角(横滚、俯仰角)和方位角。根据姿态角可以计算出重力加速度在各个坐标轴上的分量,加速度计测量得的各轴加速度,减去重力加速度分量后积分,得到速度和位置。惯导计算得到的状态,用于预测车辆当前的位置,再和卫星定位接收机得到的位置(或观测数据)进行比较。比较的偏差包含了惯导的推算误差和卫星接收机的定位误差,通过数据融合算法进行加权后,用于修正惯导的预测,让惯导的预测越来越准确。
惯性导航解算算法
通常分以下几步:
- 姿态更新:对陀螺仪输出的角速度进行积分得到姿态增量,叠加到上次的姿态上;
- 坐标转换:从IMU载体坐标系到位置、速度求解坐标系(惯性坐标系);
- 速度更新:需要考虑重力加速度的去除,得到惯性系下的加速度,通过积分得到速度;
- 位置更新:通过速度积分得到位置。
惯性导航解算算法原理图
在惯性导航中,导航方程的每一次迭代都需要利用上一次的导航结果作为初始值,因此惯导的初始化是比较重要的部分之一。姿态对准是指得到IMU的roll, pitch, yaw。roll, pitch的对准过程一般称为调平。使当车静止时,加速度计测量的比力仅由重力导致,可以通过f=C*g来求解;对于非常高精度的IMU可通过罗经对准的方式,车静止时,通过测量载体系中的地球自转来确定载体的方位(yaw)。
惯性导航初始化原理图
组合导航的卡尔曼滤波器的耦合
使用Kalman滤波器的耦合,对IMU和GNSS即点云定位结果进行融合。可分为松耦合和紧耦合两种方法。
松耦合滤波器采用位置、速度量测值和解算的位置速度之差作为组合导航滤波器输入,也即卡尔曼滤波器的量测量。紧耦合的数据包括GNSS的导航参数、定位中的伪距、距离变化等。
卡尔曼滤波器的松耦合原理图
卡尔曼滤波器的紧耦合原理图
卡尔曼滤波器松耦合和紧耦合的优点和不足对比
以百度阿波罗使用的惯导系统为例,采用了松耦合的方式,并且使用了一个误差卡尔曼滤波器。惯性导航解算的结果用于Kalman滤波器的时间更新,即预测;而GNSS、点云定位结果用于Kalman滤波器的量测更新。Kalman滤波会输出位置、速度、姿态的误差用来修正惯导模块,IMU期间误差用来补偿IMU原始数据。
百度阿波罗卡尔曼滤波器的松耦合
卡尔曼滤波融合示意
环境特征信息与惯性导航融合
目前常用的GNSS+IMU组合惯导方案在一些场景的定位精度稳定性仍不能完全满足自动驾驶的要求。例如,城市楼宇群、地下车库等GNSS长时间信号微弱的场景下,依靠GNSS信号更新精确定位稳定性不足,因此必须引入新的精确定位更新数据源,在组合惯导中引入并融合激光雷达/视觉传感定位等环境信息进行融合定位成为必然趋势。
一种组合导航和环境感知信息融合的架构示意图
以百度阿波罗的多传感器融合定位系统解决方案为例,惯性导航系统处于定位模块的中心位置,模块将IMU、GNSS、Lidar等定位信息进行融合,通过惯性导航系统解算修正后最终输出满足自动驾驶需求的6个自由度的高精度位置信息。
百度阿波罗的惯性融合定位模块框架
以上是自动驾驶惯性导航技术,你了解多少?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

原标题:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving论文链接:https://arxiv.org/pdf/2402.02519.pdf代码链接:https://github.com/HKUST-Aerial-Robotics/SIMPL作者单位:香港科技大学大疆论文思路:本文提出了一种用于自动驾驶车辆的简单高效的运动预测基线(SIMPL)。与传统的以代理为中心(agent-cent

最近一个月由于众所周知的一些原因,非常密集地和行业内的各种老师同学进行了交流。交流中必不可免的一个话题自然是端到端与火爆的特斯拉FSDV12。想借此机会,整理一下在当下这个时刻的一些想法和观点,供大家参考和讨论。如何定义端到端的自动驾驶系统,应该期望端到端解决什么问题?按照最传统的定义,端到端的系统指的是一套系统,输入传感器的原始信息,直接输出任务关心的变量。例如,在图像识别中,CNN相对于传统的特征提取器+分类器的方法就可以称之为端到端。在自动驾驶任务中,输入各种传感器的数据(相机/LiDAR

写在前面&出发点端到端的范式使用统一的框架在自动驾驶系统中实现多任务。尽管这种范式具有简单性和清晰性,但端到端的自动驾驶方法在子任务上的性能仍然远远落后于单任务方法。同时,先前端到端方法中广泛使用的密集鸟瞰图(BEV)特征使得扩展到更多模态或任务变得困难。这里提出了一种稀疏查找为中心的端到端自动驾驶范式(SparseAD),其中稀疏查找完全代表整个驾驶场景,包括空间、时间和任务,无需任何密集的BEV表示。具体来说,设计了一个统一的稀疏架构,用于包括检测、跟踪和在线地图绘制在内的任务感知。此外,重

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP
