何以为猫?可解释AI从语义层面理解CNN的识别机制
近年来,CNN 因其优异的性能,在计算机视觉、自然语言处理等各个领域受到了研究者们的青睐。但是,CNN 是一个 「黑盒」 模型,即模型的学习内容和决策过程很难用人类能够理解的方式提取和表达,这限制了它的预测可信度和实际应用。因此,CNN 的可解释性受到了越来越多的关注,研究者们试图采用特征可视化,网络诊断和网络架构调整等方式辅助解释 CNN 的学习机制,从而将这一 「黑盒」 透明化,使人类更容易理解、检测和改进其决策过程。
近日,北京大学,东方理工,南方科技大学和鹏城实验室等机构的研究团队提出了一种语义可解释人工智能(semantic explainable AI, S-XAI)的研究框架,从语义层面解释了 CNN 的学习机制,并以猫狗二分类问题为例,形象地揭示了模型是如何学习类别意义上的猫的概念,即「何以为猫」。
该研究聚焦于 CNN 从同一类别的样本中学习到的共性特征,并提取出人类可理解的语义概念,为 CNN 提供了语义层面的解释。基于此,研究首次提出了 「语义概率(semantic probability)」 的概念来表征语义要素在样本中的出现概率。实验表明,S-XAI 在二分类和多分类任务中均能成功地提取共性特征并抽象出超现实但可辨认的语义概念,在可信度评估和语义样本搜索等层面有着广泛的应用前景。
该研究以《Semantic interpretation for convolutional neural networks: What makes a cat a cat?》为题,于 2022 年 10 月 10 日发表于《Advanced Science》上。
论文链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202204723
代码链接:https://github.com/woshixuhao/semantic-explainable-AI
模型效果
不同于以往的单样本可视化研究,S-XAI能够提取并可视化群体样本的共性特征,从而获得全局可解释性。在进一步抽象出的语义空间与计算出的语义概率的基础上,S-XAI 可以为 CNN 的决策逻辑自动生成人类可理解的语义解释,并且从语义层面上评估决策的可信度。
如图 1 所示,在猫狗二分类问题中,对于同一只猫的三个角度的图片,S-XAI 自动生成了相应的语义概率雷达图和解释语句。虽然神经网络都以 90% 以上的概率将这些图片识别为猫,但是 S-XAI 从语义概率上提供了更多的解释信息,体现出这些图片之间的差异。例如,对于正面的图像,S-XAI 的解释是 「我确信它是一只猫,主要是因为它有着生动的眼睛和鼻子,显然是猫的眼睛和鼻子。同时,它有着栩栩如生的腿,有点像猫的腿。」 这个解释显示出很高的可信度。对于侧面角度的图像,S-XAI 的解释是 「它可能是一只猫,主要是因为它有眼睛,也许是猫的眼睛,但是它的腿是有点令人困惑。」 对于猫背面的图像,所有的语义概率均不明显,S-XAI 的解释是 「它可能是一只猫,但我不确定。」 同时,对于一张狗的图片,S-XAI 的解释为:「我确信它是一只狗,主要是因为它有生动的眼睛和鼻子,这显然是狗的眼睛和鼻子。虽然它的腿有点令人困惑。」
事实上,如果将这只狗的上半身遮盖住,只看腿部,即使是人类也很难判断这是猫还是狗。可以看出,S-XAI 提供的语义解释较为准确,且与人类的认知相一致,从语义层面让人类更好地理解神经网络的类别识别逻辑。
图 1. S-XAI 自动生成的语义概率雷达图和解释语句
同时,S-XAI 在语义样本搜寻中也有广阔的应用前景。如图 2 所示,当人们需要从大量图片中筛选出具有某些语义特征的图片时,S-XAI 提供了一种快捷且准确的方式,即通过语义概率进行筛选。考虑到计算语义概率只涉及神经网络的前向操作(即预测),该流程十分迅速。
图 2. 语义样本搜寻示例
在研究中,研究人员也证明了 S-XAI 在多分类任务上有着良好的拓展性。如图 3 所示,以 Mini-ImageNet 数据集(包含 100 种动物类别)为例,S-XAI 仍然能够从不同类别数据(如鸟,蛇,螃蟹,鱼等)中分别提取出清晰可辨认的共性特征和语义空间,并产生相应的语义解释。
图 3. S-XAI 在多分类任务中的表现。
原理方法
目前常见的提高模型解释性的思路主要分为可视化和模型干预两大类。可视化方法将 CNN 内部的特征图,过滤器或热力图进行可视化,从而理解网络在面对给定样本时关注到的特征。该方法的局限性在于它只能从单个样本中提取个体特征以获得局部可解释性,无法帮助人们理解模型面对同一类数据时的整体决策逻辑。模型干预方法则将已有的一些解释性强的模型(如树模型等)融入到神经网络的架构中,以提升模型的可解释性能力。虽然此类方法具有全局可解释性的优势,但往往需要重新训练模型,解释成本较大,不利于推广和应用。
受人类认知模式的启发,在 S-XAI 中,研究人员采用了一种新的解释策略,从语义层面来解释 CNN 的类别学习机制(图 4)。在自然界中,相同种类的物体往往具有某些相似的共性特征,这些共性特征构成了类别认知的重要基础。例如,尽管猫的形态各异,但它们都具有一些共性特征(如胡须,鼻子和眼睛的相关特征),这使得人类能够快速地将它们判断为猫。在实验中,研究人员发现,CNN 的类别学习机制与人类有异曲同工之处。
图 4. 语义可解释人工智能研究框架
研究中采用了一种名为行中心样本压缩(row-centered sample compression)的技术,从 CNN 中提取出了从同一类别样本中学习到的共性特征。不同于传统的主成分分析,行中心样本压缩将大量样本在 CNN 中得出的特征图在样本空间上进行降维,从而提取出少量主成分作为 CNN 学习到的共性特征。为了使提取出的共性特征更清晰,样本通过超像素分割和遗传算法找出了最优的超像素组合以降低干扰。提取出的共性特征则通过可视化的方式展现出来(图 5)。
图 5. 共性特征的提取路径
以 VGG-19 网络架构上的猫狗二分类问题为例,对猫和狗的类别数据分别提取出的不同主成分如图 6 所示。图中可以清晰地看出不同主成分展现出了可辨认的,不同层次的特征。很明显,第一主成分显示出完整的脸部特征,第二主成分显示出零散的语义概念,如胡须、眼睛和鼻子等,第三主成分则主要呈现出毛皮的特质。值得一提的是,这些主成分展现出的特征是超自然的,即不属于任何样本,而是体现出了所有同类别样本的共同特征。
图 6. 对猫和狗的类别数据分别提取出的不同主成分的可视化结果
基于提取出的共性特征,研究人员通过对样本中的语义信息进行掩码 (mask) 处理,对比主成分的变化,进一步地将其中杂糅在一起的语义概念分离开来,从而提取出各语义概念对应的语义向量,抽象出语义空间。在这里,研究人员使用了眼睛,鼻子等人类理解的语义概念,并将抽象出的语义空间可视化。在成功提取语义空间后,研究人员定义了 「语义概率」 的概念以表征语义要素在样本中的出现概率,从而为 CNN 的语义层面的解释提供了定量分析的手段。
如图 7 所示,语义空间中出现了清晰可辨认的语义概念(明亮的眼睛,小巧的鼻子),这表明语义空间被成功地从 CNN 中提取出来,展示了 CNN 从类别数据中学习到的语义信息。同时,研究者发现 CNN 对语义的认知与人类存在一定的差异,它所学习到的 “语义” 并不一定是人类共识的“语义”,甚至可能神经网络的语义更加高效。例如,研究者发现,对于猫而言,CNN 经常会将猫的鼻子和胡须作为一个整体的语义,这或许是更有效的。同时,CNN 学习到了语义之间的一些联系,例如猫的眼睛和鼻子往往是同时出现的,这一方面值得后续深入的研究。
图 7. 从 CNN 中提取出的语义向量与可视化的语义空间(上:猫眼睛空间;下:猫鼻子空间)
总结展望
综上所述,研究中提出的语义可解释人工智能(S-XAI)通过提取共性特征和语义空间,从语义层面上为 CNN 的类别识别机制提供了解释。该研究框架无需改变 CNN 的架构即可获取一定的全局解释能力,由于不涉及网络的重新训练,S-XAI 具有响应速度较快的优势,在可信度评估和语义样本搜寻方面有着可观的应用潜力。
本质上而言,S-XAI 与知识发现有着异曲同工之处。知识发现意图从神经网络找出反映共性物理规律的函数项,S-XAI 则是从 CNN 中找出反映样本共性特征的语义空间,二者的核心思想均为寻找共性并将其表示出来,尽可能的让人类可以理解。
以上是何以为猫?可解释AI从语义层面理解CNN的识别机制的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
