目录
Data2vec
ConvNext
VICReg
STEGO
CoBERT
FedX
TriBYOL
ColloSSL
LoRot
TS2Vec
首页 科技周边 人工智能 2022 Top10自监督学习模型发布!美中两国八项成果霸榜

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

Apr 10, 2023 am 08:21 AM
计算机 算法 学习模型

​自监督学习使计算机能够观察世界,通过学习图像、语音或文本的结构来了解世界。这推动了人工智能最近的许多重大进展。

尽管世界科研人员在该领域投入大量精力,但目前自我监督学习算法从图像、语音、文本和其他模式中学习的方式存在很大差异。因此,人工智能论坛Analytics India Magazine推出2022年十大自监督学习模型,以飨读者。​

Data2vec

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/pdf/2202.03555.pdf

开源代码:https://t.co/3x8VCwGI2x pic.twitter.com/Q9TNDg1paj

Meta AI 在一月份发布了 data2vec 算法,用于语音、图像和文本相关的计算机视觉模型。根据AI团队,该模型在NLP任务中具有很强的竞争力。

它不使用对比学习或依赖于输入示例的重建。Meta AI团队表示,data2vec的训练方式是通过提供输入数据的部分视图来进行预测模型表示。

该团队表示:「我们首先在学生模型中对掩码的训练样本编码。之后,在相同模型中,对未掩码的输入样本编码,从而构建训练目标。这个模型(教师模型)和学生模型只有参数上的不同。」

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

该模型根据掩码的训练样本,预测未掩码训练样本的模型表示形式。这消除了学习任务中对特定于模态的目标的依赖。

ConvNext

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/pdf/2201.03545.pdf

开源代码:https://t.co/nWx2KFtl7X

ConvNext也叫ConvNet model for the 2020s,是Meta AI团队于三月发布的一款模型。它完全基于 ConvNet的模块,因此准确、设计简单且可扩展。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

VICReg

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://t.co/H7crDPHCHV

开源代码:https://t.co/oadSBT61P3

方差不变性协方差正则化(VICReg)结合了方差项和基于冗余约简的去相关机制以及协方差正则化,以避免编码器产生恒定或非信息向量的崩溃。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

VICReg不需要诸如分支之间的权重共享、批量标准化、特征标准化、输出量化、停止梯度、memory banks等技术,并在几个下游任务上达到的结果与最先进水平相当。此外,通过实验可证明,方差正则化项可以稳定其他方法的训练,并促进性能的提高。

STEGO

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/abs/2203.08414

麻省理工学院的计算机科学与人工智能实验室与微软和康奈尔大学合作开发了基于能量的图形优化的自我监督转换器(STEGO),解决计算机视觉中最困难的任务之一:在没有人工监督的情况下为图像的每一个像素分配标签。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

STEGO学习了「语义分割」——简单来说,就是为图像中的每个像素分配标签。

语义分割是当今计算机视觉系统的一项重要技能,因为图像可能会受到对象物体的干扰。更难的是,这些对象并不总是适合文字框。相比于植被、天空和土豆泥这样难以量化的东西,算法往往更适用于离散的「事物」,比如人和汽车。

以狗在公园里玩耍的场景为例,以前的系统可能只能识别出狗,但是通过为图像的每个像素分配一个标签,STEGO可以将图像分解为若干主要成分:狗、天空、草和它的主人。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

可以「观察世界」的机器对于自动驾驶汽车和医疗诊断预测模型等各种新兴技术至关重要。由于STEGO可以在没有标签的情况下学习,它可以检测不同领域的对象,甚至是人类尚未完全理解的对象。

CoBERT

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/pdf/2210.04062.pdf

对于自我监督语音表示学习,香港中文大学(深圳)的研究人员提出了Code BERT(CoBERT)。与其他自蒸馏方法不同,他们的模型预测来自不同模态的表征。该模型将语音转换为一系列离散代码,用于表示学习。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

首先,该研究团队使用HuBERT预训练代码模型在离散空间中进行训练。然后,他们将代码模型提炼成语音模型,旨在跨模态执行更好的学习。ST任务的显著改进表明,与以前的工作相比,CoBERT的表示可能携带更多的语言信息。

CoBERT在ASR任务上的表现优于目前最佳算法的性能,并在SUPERB 语音翻译(ST)任务中带来重大改进。

FedX

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/abs/2207.09158

FedX是微软和清华大学、韩国科学技术院合作推出的无监督联邦学习框架。通过局部和全局知识提炼和对比学习,该算法从离散和异构的本地数据中无偏表示学习。此外,它是一种适应性强的算法,可用作联合学习情境中各种现有自监督算法的附加模块。

TriBYOL

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/pdf/2206.03012.pdf

日本北海道大学提出了TriBYOL,用于小批量的自监督表示学习。该模型下,研究人员不需要大批量的计算资源来学习良好的表示。这模型为三元组网络结构,结合了三视图损失,从而在多个数据集上提高了效率并优于几种自监督算法。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

ColloSSL

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/pdf/2202.00758.pdf

诺基亚贝尔实验室的研究人员与佐治亚理工学院和剑桥大学合作开发了ColloSSL,这是一种用于人类活动识别的协作自我监督算法。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

多个设备同时捕获的未标记传感器数据集可以被视为彼此的自然转换,然后生成用于表示学习的信号。本文提出了三种方法——设备选择、对比采样和多视图对比损失。

LoRot

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/pdf/2207.10023.pdf

成均馆大学研究团队提出了一个简易的自监督辅助任务,该任务预测具有三个属性的可定位旋转(LoRot)以辅助监督目标。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

该模型具有三大特点。第一,研究团队引导模型学习丰富的特征。第二,分布式培训在自监督转变的同时不会发生明显变化。第三,该模型轻量通用,对以前的技术具有很高的适配性。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

TS2Vec

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

论文链接:https://arxiv.org/pdf/2106.10466.pdf

微软和北京大学提出了一个通用学习框架TS2Vec,用于在任意语义级别中时间序列的表示学习。该模型在增强的上下文视图中以分层技术执行对比学习,从而为各个时间戳提供强大的上下文表示。

2022 Top10自监督学习模型发布!美中两国八项成果霸榜

结果显示,与最先进的无监督时间序列表示学习相比,TS2Vec模型在性能上有显著改进。

2022年,自监督学习和强化学习这两个领域都有巨大的创新。虽然研究人员一直在争论哪个更重要,但就像自监督学习大佬Yann LeCun说的那样:「强化学习就像蛋糕上的樱桃,监督学习是蛋糕上的糖衣,而自监督学习就是蛋糕本身。」

参考资料:

https://analyticsindiamag.com/top-10-self-supervised-learning-models-in-2022/

以上是2022 Top10自监督学习模型发布!美中两国八项成果霸榜的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

远程桌面无法验证远程计算机的身份 远程桌面无法验证远程计算机的身份 Feb 29, 2024 pm 12:30 PM

Windows远程桌面服务允许用户远程访问计算机,对于需要远程工作的人来说非常便利。然而,当用户无法连接到远程计算机或远程桌面无法验证计算机身份时,会遇到问题。这可能是由网络连接问题或证书验证失败引起的。在这种情况下,用户可能需要检查网络连接、确保远程计算机是在线的,并尝试重新连接。另外,确保远程计算机的身份验证选项已正确配置也是解决问题的关键。通过仔细检查和调整设置,通常可以解决Windows远程桌面服务中出现的这类问题。由于存在时间或日期差异,远程桌面无法验证远程计算机的身份。请确保您的计算

2024 CSRankings全美计算机科学排名发布!CMU霸榜,MIT跌出前5 2024 CSRankings全美计算机科学排名发布!CMU霸榜,MIT跌出前5 Mar 25, 2024 pm 06:01 PM

2024CSRankings全美计算机科学专业排名,刚刚发布了!今年,全美全美CS最佳大学排名中,卡耐基梅隆大学(CMU)在全美和CS领域均名列前茅,而伊利诺伊大学香槟分校(UIUC)连续六年稳定地位于第二。佐治亚理工学院则排名第三。然后,斯坦福大学、圣迭戈加利福尼亚大学、密歇根大学、华盛顿大学并列世界第四。值得注意的是,MIT排名下跌,跌出前五。CSRankings是由麻省州立大学阿姆赫斯特分校计算机与信息科学学院教授EmeryBerger发起的全球院校计算机科学领域排名项目。该排名基于客观的

未能打开这台计算机上的组策略对象 未能打开这台计算机上的组策略对象 Feb 07, 2024 pm 02:00 PM

在使用电脑时,操作系统偶尔也会出现故障。今天遇到的问题是在访问gpedit.msc时,系统提示无法打开组策略对象,因为可能缺乏正确的权限。未能打开这台计算机上的组策略对象解决方法:1、访问gpedit.msc时,系统提示无法打开该计算机上的组策略对象,因为缺乏权限。详细信息:系统无法定位指定的路径。2、用户点击关闭按钮后,弹出如下错误窗口。3、立即查看日志记录,并结合记录信息,发现问题出在C:\Windows\System32\GroupPolicy\Machine\registry.pol文件

CLIP-BEVFormer:显式监督BEVFormer结构,提升长尾检测性能 CLIP-BEVFormer:显式监督BEVFormer结构,提升长尾检测性能 Mar 26, 2024 pm 12:41 PM

写在前面&笔者的个人理解目前,在整个自动驾驶系统当中,感知模块扮演了其中至关重要的角色,行驶在道路上的自动驾驶车辆只有通过感知模块获得到准确的感知结果后,才能让自动驾驶系统中的下游规控模块做出及时、正确的判断和行为决策。目前,具备自动驾驶功能的汽车中通常会配备包括环视相机传感器、激光雷达传感器以及毫米波雷达传感器在内的多种数据信息传感器来收集不同模态的信息,用于实现准确的感知任务。基于纯视觉的BEV感知算法因其较低的硬件成本和易于部署的特点,以及其输出结果能便捷地应用于各种下游任务,因此受到工业

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

探究C++sort函数的底层原理与算法选择 探究C++sort函数的底层原理与算法选择 Apr 02, 2024 pm 05:36 PM

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

人工智能可以预测犯罪吗?探索CrimeGPT的能力 人工智能可以预测犯罪吗?探索CrimeGPT的能力 Mar 22, 2024 pm 10:10 PM

人工智能(AI)与执法领域的融合为犯罪预防和侦查开辟了新的可能性。人工智能的预测能力被广泛应用于CrimeGPT(犯罪预测技术)等系统,用于预测犯罪活动。本文探讨了人工智能在犯罪预测领域的潜力、目前的应用情况、所面临的挑战以及相关技术可能带来的道德影响。人工智能和犯罪预测:基础知识CrimeGPT利用机器学习算法来分析大量数据集,识别可以预测犯罪可能发生的地点和时间的模式。这些数据集包括历史犯罪统计数据、人口统计信息、经济指标、天气模式等。通过识别人类分析师可能忽视的趋势,人工智能可以为执法机构

改进的检测算法:用于高分辨率光学遥感图像目标检测 改进的检测算法:用于高分辨率光学遥感图像目标检测 Jun 06, 2024 pm 12:33 PM

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

See all articles