目录
什么是量子人工智能?
什么是量子计算?
它为什么如此重要?
量子人工智能是如何工作的?
在人工智能中应用量子计算的可能性有哪些?
量子人工智能的关键里程碑是什么?
首页 科技周边 人工智能 智能百科 | 2022 年量子人工智能深度指南

智能百科 | 2022 年量子人工智能深度指南

Apr 10, 2023 am 08:31 AM
人工智能 量子计算

2022 年量子人工智能深度指南 | 智能百科

量子计算和人工智能都是变革性技术,人工智能很可能需要量子计算才能取得重大进展。人工智能虽然用经典计算机产生功能性应用,但受限于经典计算机的计算能力。量子计算可以为人工智能提供计算提升,使其能够解决更复杂的问题和AGI(通用人工智能)。

什么是量子人工智能?

量子人工智能是使用量子计算来计算机器学习算法。得益于量子计算的计算优势,量子人工智能可以帮助实现经典计算机无法实现的结果。

什么是量子计算?

量子力学是一种基于不同于日常生活中观察到的原理的通用模型。用量子计算来处理数据,需要建立数据的量子模型。混合量子经典模型对于量子计算的纠错和量子计算机的正确运行也是必要的。

  • 量子数据:量子数据可以被视为包含在用于计算机化的量子比特中的数据包。然而,观察和存储量子数据具有挑战性,因为叠加 和纠缠等特性使其有价值。此外,量子数据是嘈杂的,需要在正确分析和解释这些数据的阶段应用机器学习。
  • 混合量子经典模型:仅在使用量子处理器生成量子数据时,极有可能获得无意义的数据。因此,在传统计算机中常用的CPU和GPU等快速数据处理机制的驱动下,出现了一种混合模型。
  • 量子算法:算法是导致问题解决的一系列步骤。为了在设备上执行这些步骤,必须使用设备设计的特定指令集。与经典计算相比,量子计算引入了不同的指令集,这些指令集基于完全不同的执行理念。量子算法的目的是利用叠加和纠缠等量子效应来更快地获得解决方案。

它为什么如此重要?

尽管人工智能在过去十年中取得了长足的进步,但尚未克服技术限制。借助量子计算的独特特性,可以消除实现 AGI(通用人工智能)的障碍。量子计算可用于机器学习模型的快速训练和创建优化算法。量子计算提供的优化和稳定的人工智能可以在短时间内完成多年的分析,并引领技术进步。神经形态认知模型、自适应机器学习或不确定性推理是当今人工智能面临的一些基本挑战。量子人工智能是下一代人工智能最有可能的解决方案之一。

量子人工智能是如何工作的?

最近,谷歌与滑铁卢大学、  ​​X​​和 大众汽车公司合作推出了TensorFlow Quantum(TFQ):一个用于量子机器学习的开源库 。TFQ 的目的是提供必要的工具来控制和模拟自然或人工量子系统。TFQ 是一套结合了量子建模和机器学习技术的工具的一个例子。

2022 年量子人工智能深度指南 | 智能百科

资料来源:谷歌

  1. 将量子数据转换为量子数据集:量子数据可以表示为一个多维数字数组,称为量子张量。TensorFlow 处理这些张量以表示创建数据集以供进一步使用。
  2. 选择量子神经网络模型:基于对量子数据结构的了解,选择量子神经网络模型。目的是执行量子处理,以提取隐藏在纠缠状态中的信息。
  3. 样本或平均值:量子态的测量以样本形式从经典分布中提取经典信息。这些值是从量子态本身获得的。TFQ 提供了对涉及步骤 (1) 和 (2) 的多次运行进行平均的方法。
  4. 评估经典神经网络模型——由于现在将量子数据转换为经典数据,因此使用深度学习技术来学习数据之间的相关性。

评估成本函数、梯度和更新参数的其他步骤是深度学习的经典步骤。这些步骤可确保为无监督任务创建有效模型。

在人工智能中应用量子计算的可能性有哪些?

研究人员对量子人工智能的近期现实目标是创建性能优于经典算法的量子算法并将其付诸实践。

  • 用于学习的量子算法:开发用于经典学习模型的量子泛化的量子算法。它可以在深度学习训练过程中提供可能的加速或其他改进。量子计算对经典机器学习的贡献可以通过快速呈现人工神经网络权重的最优解集来实现。
  • 决策问题的量子算法:经典决策问题是根据决策树制定的。达到解决方案集的一种方法是从某些点创建分支。但是,当每个问题都过于复杂而无法通过不断地一分为二来解决时,这种方法的效率就会降低。基于​​哈密顿​​时间演化的量子算法可以比随机游走更快地解决由多个决策树表示的问题。
  • 量子搜索:大多数搜索算法都是为经典计算而设计的。经典计算在搜索问题上的表现优于人类。另一方面,Lov Grover 提供了他的 Grover 算法,并表示量子计算机可以比经典计算机更快地解决这个问题。由量子计算驱动的人工智能有望用于加密等近期应用。
  • 量子博弈论:经典博弈论是一种在人工智能应用中广泛使用的建模过程。该理论向量子场的延伸就是量子博弈论。它可以成为克服量子通信和量子人工智能实施中的关键问题的有前途的工具。

量子人工智能的关键里程碑是什么?

尽管量子 AI 是一项不成熟的技术,但量子计算方面的改进增加了量子 AI 的潜力。然而,量子人工智能产业需要关键的里程碑才能成为更成熟的技术。这些里程碑可以概括为:

  • 不易出错且功能更强大的量子计算系统
  • 广泛采用的开源建模和训练框架
  • 庞大而熟练的开发者生态系统
  • 令人信服的人工智能应用程序,其量子计算优于经典计算

这些关键步骤将使量子人工智能能够进一步发展。by Cem Dilmegani

以上是智能百科 | 2022 年量子人工智能深度指南的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles