目录
预测与现实的偏差
模型的推广
采用水平
首页 科技周边 人工智能 可以采用哪些KPI来衡量人工智能项目的成功?

可以采用哪些KPI来衡量人工智能项目的成功?

Apr 10, 2023 am 09:21 AM
人工智能 机器学习 机器学习模型的关键

调研机构IDC公司在2020年6月发布的一项研究报告表明,大约28%的人工智能计划遭遇失败。报告给出的理由是缺乏专业知识、缺乏相关数据以及缺乏足够集成的开发环境。为了建立一个持续改进机器学习的过程并避免陷入困境,确定关键绩效指标(KPI)现在是当务之急。

可以采用哪些KPI来衡量人工智能项目的成功?

而在行业上游,可以由数据科学家来定义模型的技术性能指标。它们将根据所使用的算法类型而有所不同。在旨在预测某人的身高作为其年龄函数的回归的情况下,例如,可以求助于线性确定系数。

可以采用一个衡量预测质量的方程:如果相关系数的平方为零,回归线确定0%的点分布。反之,如果该系数为100%,则该数字等于1。因此,这表明预测的质量非常好。

预测与现实的偏差

评估回归的另一个指标是最小二乘法,它指的是损失函数。它包括通过计算实际值与预测线之间偏差的平方和来量化误差,然后通过最小化平方误差来拟合模型。在相同的逻辑中,可以利用平均绝对误差方法,该方法包括计算偏差的基本值的平均值。

法国咨询机构凯捷公司负责战略、数据和人工智能服务的CharlottePierron-Perlès总结说:“无论如何,这相当于衡量与我们试图预测的差距。”

例如,在用于垃圾邮件检测的分类算法中,有必要查找误报和漏报的垃圾邮件。PierronPerlès解释说:“例如,我们为一家化妆品集团开发了一种机器学习解决方案,可以优化生产线的效率。目的是在生产线开始时识别可能导致生产中断的有缺陷的化妆品。我们在与工厂经营者讨论之后与他们一起寻求一个模型来完成检测,即使这意味着检测到误报,也就是说,合格的化妆品可能被误认为是有缺陷的。”

基于误报和漏报的概念,其他三个指标允许评估分类模型:

(1)召回率(R)是指模型敏感度的测量值。它是正确识别的真实阳性(以新冠病毒检测呈阳性为例)与所有应检测的真实阳性(冠状病毒检测呈阳性+冠状病毒检测呈阴性实际是阳性)的比例:R=真阳性/真阳性+假阴性。

(2)精度(P)是指准确度的度量。它是正确的真阳性(新冠病毒检测呈阳性)与所有确定为阳性的结果(新冠病毒检测呈阳性+新冠病毒检测呈阴性)的比例:P=真阳性/真阳性+假阳性。

(3)调和平均值(F-score)衡量模型给出正确预测和拒绝其他预测的能力:F=2×精度×召回率/精度+召回率

模型的推广

法国ESNKeyrus公司首席高级数据科学家DavidTsangHinSun强调说:“一旦构建成模型,其泛化能力将成为关键指标。”

那么如何估计它?通过测量预测和预期结果之间的差异,然后了解这种差异随时间的演变。他解释说,“在一段时间之后,我们可能会遇到分歧。这可能是由于数据集在质量和数量方面的训练不足而导致的学习不足(或过度拟合)。”

那么其解决方案是什么?例如,在图像识别模型的情况下,可以使用对抗性生成网络通过旋转或扭曲来增加图片学习的数量。另一种技术(适用于分类算法):合成少数过采样,它包括通过过采样增加数据集中低发生率示例的数量。

在过度学习的情况下也会出现分歧。在这种配置中,模型在训练后将不会局限于预期的相关性,但是由于过于专业化,它会捕获现场数据产生的噪声并产生不一致的结果。DavidTsangHinSun指出,“然后有必要检查训练数据集的质量,并可能调整变量的权重。”

而经济的关键绩效指标(KPI)依然存在。法国咨询机构AIBuilders公司首席执行官StéphaneRoder认为:“我们必须扪心自问,错误率是否与业务挑战相符。例如,保险商Lemonade公司开发了一种机器学习模块,可以在客户提出索赔后3分钟内根据所传达的信息(包括照片)向客户赔付保险金。考虑到节省的费用,一定的错误率会产生成本。在模型的整个生命周期中,特别是与总体拥有成本(TCO)相比,从开发到维护,检查这一测量值是非常重要。”

采用水平

即使在同一家公司内,预期的关键绩效指标(KPI)也可能有所不同。凯捷公司的CharlottePierronPerlès指出:“我们为一家具有国际地位的法国零售商开发了一个消费预测引擎。结果证明该模型的精确目标在百货商店销售的产品和新产品之间是不同的。后者的销售动态取决于因素,尤其是与市场反应相关的因素,从定义上来说,这些因素不太可控。”

最后一个关键绩效指标是采用水平。CharlottePierron-Perlès说:“即使一个模型质量很好,仅靠它自己是不够的。这需要开发具有面向用户体验的人工智能产品,既可用于业务,又可实现机器的承诺学习。”

StéphaneRoder总结说:“这个用户体验还将允许用户提供反馈,这将有助于在日常生产数据流之外提供人工智能知识。”​

以上是可以采用哪些KPI来衡量人工智能项目的成功?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles