用AI和自动化降低合规成本的五种方法
虽然制定规章制度是为了保护消费者和市场,但它们往往很复杂,因此使得遵守这些制度的成本很高,且具有挑战性。
像金融服务和生命科学这些监管严格的行业,必须承担最繁重的合规成本。据 Deloitte 估计,自 2008 年金融危机以来,银行业的合规成本增加了 60%,而风险管理协会发现,50% 的金融机构仅将其收入的 6% 到 10% 用于合规成本。
人工智能 (AI) 和智能自动化流程,如 RPA(机器人流程自动化) 和 NLP(自然语言处理), 可以帮助提高效率并降低成本,以满足监管的要求。以下是如何实现的五种方法:
1. 用 RPA 和 NLP 管理法规的变更
仅在一年时间里,一个金融机构就可能需要处理高达 3 亿页的新法规,而且这些法规由多个州、联邦或市政当局等通过众多渠道广为传播。
那些需要人工参与的工作,如收集、分类、理解其中的变化以及将它们对应到合适的业务中,是十分花费时间的。
虽然 RPA 可以通过编程来收集制度的变更,但还需要理解并应用到业务流程中去。这就是复杂的 OCR(光学字符识别)、NLP 和 AI 模型的用武之地。
- 首先,OCR 可以将制度文本转换为机器语言。
- 其次,使用 NLP 去处理这些机器语言、理解错综复杂的句子和复杂的监管术语。
- 然后,人工智能模型可以利用输出结果,根据过去类似的案例提供政策变化的选项,并通过新法规过滤以识别与业务相关的法规。
所有这些功能或方法,都可以为分析师节省大量的时间,从而降低成本。
2. 精简监管报告
确定监管报告的内容、时间和方式是最耗费时间的。这要求分析师不仅要反复研读相关制度,还要对其进行解释,编写如何适用于自身业务的说明,并将其翻译成代码,以便于检索相关数据。
换一个办法的话,人工智能可以快速解析非结构化监管数据以定义报告要求,根据过去的规则和情况对其进行解释,并生成代码以触发自动化流程以访问多个公司资源以构建报告。这种监管情报方法正在不断获得认可,以便能够对金融服务和生命科学这类需要提交新产品批准的公司提供支持。
3. 缩短营销材料的审核过程
在监管严格的市场中,对销售过程中产生的营销材料要求合规。但是,审批不断涌现新的营销材料的过程可能是繁琐的。
制药公司的营销内容趋势向个性化发展。同时,因为合规官需要确保每条内容都与药品标签一致并合法合规,这种发展趋势以指数级增加的速度推高合规成本。由于增加人力来扩大这些策略规模,对成本带来显著的提升,因此人工智能现在被用来扫描内容,更快更有效地确定合规性。在某些情况下,人工智能机器人甚至被用来编辑和编写符合法规的营销文案。
4. 减少交易监控中的误报
在金融服务传统的基于规则的交易监控系统中,容易触发较多次数的误报。在某些情况下,误报率已高达 90%,每个警报都需要合规官进行核查。
通过将 AI 整合到传统交易监控系统中,可以最大限度地减少错误的合规警报并降低审查成本。被识别出是合法的高风险类问题可以提交至合规官,而那些不合法的问题可以自动解决。
由于合规官只负责处理高风险标记的交易,这些资源可以重新部署到其他价值更多的地方。还有另一种新的趋势出现,人工智能也可用于更新传统规则引擎和监控系统。
5. 进行背景和法律调查
为了限制犯罪和洗钱活动,银行需要进行尽职调查,以确保新客户在整个关系中都是守法行为。根据某些人的风险水平,背景调查可能需要 2 — 24 小时不等。其中大部分时间都用在收集文件、检查数据库和审查媒体渠道上。
人工智能和自动化可以简化这一过程。机器人可用于抓取网络上提到的客户,并利用情绪分析来标记负面内容。使用 NLP 技术可以扫描法庭文件,寻找非法活动迹象和相关媒体的曝光报道。
以上是用AI和自动化降低合规成本的五种方法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
