监控 Python 内存使用情况和代码执行时间
我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?
在开发过程中,我很确定我们大多数人都会想知道这一点,在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。
本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。
- time 模块
- %%time 魔法命令
- line_profiler
- memory_profiler
time 模块
这是计算代码运行所需时间的最简单、最直接(但需要手动开发)的方法。他的逻辑也很简单:记录代码运行之前和之后的时间,计算时间之间的差异。这可以实现如下:
import time start_time = time.time() result = 5+2 end_time = time.time() print('Time taken = {} sec'.format(end_time - start_time))
下面的例子显示了for循环和列表推导式在时间上的差异:
import time # for loop vs. list comp list_comp_start_time = time.time() result = [i for i in range(0,1000000)] list_comp_end_time = time.time() print('Time taken for list comp = {} sec'.format(list_comp_end_time - list_comp_start_time)) result=[] for_loop_start_time = time.time() for i in range(0,1000000): result.append(i) for_loop_end_time = time.time() print('Time taken for for-loop = {} sec'.format(for_loop_end_time - for_loop_start_time)) list_comp_time = list_comp_end_time - list_comp_start_time for_loop_time = for_loop_end_time - for_loop_start_time print('Difference = {} %'.format((for_loop_time - list_comp_time)/list_comp_time * 100))
我们都知道for会慢一些。
Time taken for list comp = 0.05843973159790039 sec Time taken for for-loop = 0.06774497032165527 sec Difference = 15.922795107582594 %
%%time 魔法命令
魔法命令是IPython内核中内置的方便命令,可以方便地执行特定的任务。一般情况下都实在jupyter notebook种使用。
在单元格的开头添加%%time ,单元格执行完成后,会输出单元格执行所花费的时间。
%%time def convert_cms(cm, unit='m'): ''' Function to convert cm to m or feet ''' if unit == 'm': return cm/100 return cm/30.48 convert_cms(1000)
结果如下:
CPU times: user 24 µs, sys: 1 µs, total: 25 µs Wall time: 28.1 µs Out[8]: 10.0
这里的CPU times是CPU处理代码所花费的实际时间,Wall time是事件经过的真实时间,在方法入口和方法出口之间的时间。
line_profiler
前两个方法只提供执行该方法所需的总时间。通过时间分析器我们可以获得函数中每一个代码的运行时间。
这里我们需要使用line_profiler包。使用pip install line_profiler。
import line_profiler def convert_cms(cm, unit='m'): ''' Function to convert cm to m or feet ''' if unit == 'm': return cm/100 return cm/30.48 # Load the profiler %load_ext line_profiler # Use the profiler's magic to call the method %lprun -f convert_cms convert_cms(1000, 'f')
输出结果如下:
Timer unit: 1e-06 s Total time: 4e-06 s File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py Function: convert_cms at line 1 Line # Hits Time Per Hit % Time Line Contents ============================================================== 1 def convert_cms(cm, unit='m'): 2 ''' 3 Function to convert cm to m or feet 4 ''' 5 1 2.0 2.0 50.0 if unit == 'm': 6 return cm/100 7 1 2.0 2.0 50.0 return cm/30.48
可以看到line_profiler提供了每行代码所花费时间的详细信息。
- Line Contents :运行的代码
- Hits:行被执行的次数
- Time:所花费的总时间(即命中次数x每次命中次数)
- Per Hit:一次执行花费的时间,也就是说 Time = Hits X Per Hit
- % Time:占总时间的比例
可以看到,每一行代码都详细的分析了时间,这对于我们分析时间相当的有帮助。
memory_profiler
与line_profiler类似,memory_profiler提供代码的逐行内存使用情况。
要安装它需要使用pip install memory_profiler。我们这里监视convert_cms_f函数的内存使用情况。
from conversions import convert_cms_f import memory_profiler %load_ext memory_profiler %mprun -f convert_cms_f convert_cms_f(1000, 'f')
convert_cms_f函数在单独的文件中定义,然后导入。结果如下:
Line # Mem usage Increment Occurrences Line Contents ============================================================= 1 63.7 MiB 63.7 MiB 1 def convert_cms_f(cm, unit='m'): 2 ''' 3 Function to convert cm to m or feet 4 ''' 5 63.7 MiB 0.0 MiB 1 if unit == 'm': 6 return cm/100 7 63.7 MiB 0.0 MiB 1 return cm/30.48
memory_profiler 提供对每行代码内存使用情况的详细了解。
这里的1 MiB (MebiByte) 几乎等于 1MB。1 MiB = 1.048576 1MB
但是memory_profiler 也有一些缺点:它通过查询操作系统内存,所以结果可能与 python 解释器略有不同,如果在会话中多次运行 %mprun,可能会注意到增量列报告所有代码行为 0.0 MiB。这是因为魔法命令的限制导致的。
虽然memory_profiler有一些问题,但是它就使我们能够清楚地了解内存使用情况,对于开发来说是一个非常好用的工具。
总结
虽然Python并不是一个以执行效率见长的语言,但是在某些特殊情况下这些命令对我们还是非常有帮助的。
以上是监控 Python 内存使用情况和代码执行时间的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

MySQL 有免费的社区版和收费的企业版。社区版可免费使用和修改,但支持有限,适合稳定性要求不高、技术能力强的应用。企业版提供全面商业支持,适合需要稳定可靠、高性能数据库且愿意为支持买单的应用。选择版本时考虑的因素包括应用关键性、预算和技术技能。没有完美的选项,只有最合适的方案,需根据具体情况谨慎选择。

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

MySQL安装失败的原因主要有:1.权限问题,需以管理员身份运行或使用sudo命令;2.依赖项缺失,需安装相关开发包;3.端口冲突,需关闭占用3306端口的程序或修改配置文件;4.安装包损坏,需重新下载并验证完整性;5.环境变量配置错误,需根据操作系统正确配置环境变量。解决这些问题,仔细检查每个步骤,就能顺利安装MySQL。

MySQL下载文件损坏,咋整?哎,下载个MySQL都能遇到文件损坏,这年头真是不容易啊!这篇文章就来聊聊怎么解决这个问题,让大家少走弯路。读完之后,你不仅能修复损坏的MySQL安装包,还能对下载和安装过程有更深入的理解,避免以后再踩坑。先说说为啥下载文件会损坏这原因可多了去了,网络问题是罪魁祸首,下载过程中断、网络不稳定都可能导致文件损坏。还有就是下载源本身的问题,服务器文件本身就坏了,你下载下来当然也是坏的。另外,一些杀毒软件过度“热情”的扫描也可能造成文件损坏。诊断问题:确定文件是否真的损坏

MySQL 可在无需网络连接的情况下运行,进行基本的数据存储和管理。但是,对于与其他系统交互、远程访问或使用高级功能(如复制和集群)的情况,则需要网络连接。此外,安全措施(如防火墙)、性能优化(选择合适的网络连接)和数据备份对于连接到互联网的 MySQL 数据库至关重要。

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

MySQL拒启动?别慌,咱来排查!很多朋友安装完MySQL后,发现服务死活启动不了,心里那个急啊!别急,这篇文章带你从容应对,揪出幕后黑手!读完后,你不仅能解决这个问题,还能提升对MySQL服务的理解,以及排查问题的思路,成为一名更强大的数据库管理员!MySQL服务启动失败,原因五花八门,从简单的配置错误到复杂的系统问题都有可能。咱们先从最常见的几个方面入手。基础知识:服务启动流程简述MySQL服务启动,简单来说,就是操作系统加载MySQL相关的文件,然后启动MySQL守护进程。这其中涉及到配置

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。
