美媒关注:训练出ChatGPT需要消耗多少电力?
3月10日消息,AI已经重新成为科技行业的热门话题,预计它将彻底改变从零售到医药等价值数万亿美元的行业。但每创造一个新的聊天机器人或图像生成器都需要耗费大量的电力,这意味着这项技术可能释放大量温室气体,进而加剧全球变暖问题。
微软、谷歌和ChatGPT制造商OpenAI都要使用云计算,而云计算依赖于全球海量数据中心服务器内数以千计的芯片来训练被称为模型的AI算法,分析数据以帮助这些算法“学习”如何执行任务。ChatGPT的成功促使其他公司竞相推出自己的AI系统和聊天机器人,或者开发使用大型AI模型的产品。
与其他形式的计算相比,AI需要使用更多的能源,训练单个模型消耗的电力超过100多个美国家庭1年的用电量。然而,虽然AI行业增长非常快,但却不够透明,以至于没有人确切知道AI的总用电量和碳排放量。碳排放量也可能有很大差异,这取决于提供电力的发电厂类型,靠烧煤或天然气发电供电的数据中心,碳排放量显然高于太阳能或风力发电支持的数据中心。
虽然研究人员已经统计了创建单一模型所产生的碳排放量,有些公司也提供了有关他们能源使用的数据,但他们没有对这项技术的总用电量进行总体估计。AI公司Huging Face研究员萨莎·卢西奥尼(Sasha Luccioni)写了一篇论文,量化了她旗下公司Bloom的碳排放情况,Bloom是OpenAI模型GPT-3的竞争对手。卢西奥尼还试图根据一组有限的公开数据,对OpenAI聊天机器人ChatGPT的碳排放情况进行评估。
提高透明度
卢西奥尼等研究人员表示,在AI模型的电力使用和排放方面,需要提高透明度。有了这些信息,政府和公司可能会决定,使用GPT-3或其他大型模型来研究癌症治疗或保护土著语言是否值得。
更高的透明度也可能带来更多的审查,加密货币行业可能会提供前车之鉴。根据剑桥比特币电力消耗指数,比特币因其耗电量过大而受到批评,每年的耗电量与阿根廷一样多。这种对电力的贪婪需求促使纽约州通过了一项为期两年的禁令,暂停向以化石燃料发电供电的加密货币采矿商发放许可证。
GPT-3是功能单一的通用AI程序,可以生成语言,具有多种不同的用途。2021年发表的一篇研究论文显示,训练GPT-3耗用了1.287吉瓦时电量,大约相当于120个美国家庭1年的用电量。同时,这样的训练产生了502吨碳,相当于110辆美国汽车1年的排放量。而且,这种训练只适用于一个程序,或者说是“模型”。
虽然训练AI模型的前期电力成本巨大,但研究人员发现,在某些情况下,这只是模型实际使用所消耗电力的40%左右。此外,AI模型也在变得越来越大。OpenAI的GPT-3使用了1750亿个参数或变量,而其前身仅使用了15亿个参数。
OpenAI已经在研究GPT-4,而且必须定期对模型进行再训练,以保持其对时事的了解。卡内基梅隆大学教授艾玛·斯特鲁贝尔(Emma Strubell)是首批研究AI能源问题的研究人员之一,她说:“如果你不对模型进行再训练,它甚至可能不知道何为新冠肺炎。”
另一个相对的衡量标准来自谷歌,研究人员发现,AI训练占该公司总用电量的10%至15%,2021年该公司的总用电量为18.3太瓦时。这意味着,谷歌的AI每年耗电量达2.3太瓦时,大约相当于亚特兰大所有家庭的1年用电量。
科技巨头做出净零承诺
虽然在许多情况下,AI模型变得越来越大,但AI公司也在不断改进,使其以更高效的方式运行。微软、谷歌和亚马逊等美国最大的云计算公司,都做出了碳减排或净零承诺。谷歌在一份声明中表示,到2030年,该公司将在所有业务中实现净零排放,其目标是完全使用无碳能源运营其办公室和数据中心。谷歌还在使用AI来提高其数据中心的能效,该技术直接控制设施中的冷却系统。
OpenAI也列举了该公司为提高ChatGPT应用程序编程接口的效率所做的工作,帮助客户降低了用电量和价格。OpenAI发言人表示:“我们非常认真地承担起阻止和扭转气候变化的责任,我们对如何最大限度地利用我们的计算能力进行了很多思考。OpenAI运行在Azure上,我们与微软团队密切合作,以提高运行大型语言模型的效率并减少碳排放。”
微软指出,该公司正在购买可再生能源,并采取其他措施,以实现之前宣布的目标,即到2030年实现净零排放。微软在声明中称:“作为我们创造更可持续性未来承诺的一部分,微软正在投资于研究,以衡量AI的能源使用和碳排放影响,同时致力于提高大型系统在培训和应用方面的效率。”
耶路撒冷希伯来大学教授罗伊·施瓦茨(Roy Schwartz)与微软的一个团队合作,测量了一个大型AI模型的碳足迹。他表示:“显然,这些公司不愿透露他们使用的是什么模型,以及它排放了多少碳。”
有些方法可以让AI更高效地运行。能源咨询公司Wood Mackenzie的本·赫兹-沙格尔(Ben Hertz-Shargel)表示,由于AI训练可以随时进行,开发者或数据中心可以将训练安排在电力更便宜或过剩的时候,从而使它们的运营更加环保。AI公司在电力过剩时训练自己的模型,然后可以在营销中将其当成一大卖点,以此表明他们注重环保。
芯片运行耗电量惊人
大多数数据中心使用图形处理单元(GPU)来训练AI模型,这些组件是芯片行业制造的最耗电组件之一。摩根士丹利分析师本月早些时候发布的一份报告称,大型模型需要数万个GPU,培训周期从几周到几个月不等。
AI领域更大的谜团之一是与所使用芯片相关的碳排放总量。最大的GPU制造商英伟达表示,当涉及到AI任务时,他们的芯片可以更快地完成任务,总体上效率更高。
英伟达在声明中表示:“与使用CPU相比,使用GPU来加速AI速度更快,也更高效。对于某些AI工作负载来说,能效通常可以提高20倍,对于生成式人工智能必不可少的大型语言模型,能效则可提高300倍。”
卢西奥尼说,虽然英伟达已经披露了与能源相关的直接排放和间接排放数据,但该公司并没有透露更多细节。她认为,当英伟达分享这些信息时,我们可能发现GPU消耗的电量与一个小国用电量差不多,“这可能会让人抓狂”!(小小)
以上是美媒关注:训练出ChatGPT需要消耗多少电力?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

CentOS 关机命令为 shutdown,语法为 shutdown [选项] 时间 [信息]。选项包括:-h 立即停止系统;-P 关机后关电源;-r 重新启动;-t 等待时间。时间可指定为立即 (now)、分钟数 ( minutes) 或特定时间 (hh:mm)。可添加信息在系统消息中显示。

检查CentOS系统中HDFS配置的完整指南本文将指导您如何有效地检查CentOS系统上HDFS的配置和运行状态。以下步骤将帮助您全面了解HDFS的设置和运行情况。验证Hadoop环境变量:首先,确认Hadoop环境变量已正确设置。在终端执行以下命令,验证Hadoop是否已正确安装并配置:hadoopversion检查HDFS配置文件:HDFS的核心配置文件位于/etc/hadoop/conf/目录下,其中core-site.xml和hdfs-site.xml至关重要。使用

CentOS系统下GitLab的备份与恢复策略为了保障数据安全和可恢复性,CentOS上的GitLab提供了多种备份方法。本文将详细介绍几种常见的备份方法、配置参数以及恢复流程,帮助您建立完善的GitLab备份与恢复策略。一、手动备份利用gitlab-rakegitlab:backup:create命令即可执行手动备份。此命令会备份GitLab仓库、数据库、用户、用户组、密钥和权限等关键信息。默认备份文件存储于/var/opt/gitlab/backups目录,您可通过修改/etc/gitlab

在 CentOS 上安装 MySQL 涉及以下步骤:添加合适的 MySQL yum 源。执行 yum install mysql-server 命令以安装 MySQL 服务器。使用 mysql_secure_installation 命令进行安全设置,例如设置 root 用户密码。根据需要自定义 MySQL 配置文件。调整 MySQL 参数和优化数据库以提升性能。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

在CentOS系统上安装和配置GitLab时,数据库的选择至关重要。GitLab兼容多种数据库,但PostgreSQL和MySQL(或MariaDB)最为常用。本文将分析数据库选择因素,并提供详细的安装和配置步骤。数据库选择指南选择数据库需要考虑以下因素:PostgreSQL:GitLab的默认数据库,功能强大,可扩展性高,支持复杂查询和事务处理,适合大型应用场景。MySQL/MariaDB:广泛应用于Web应用的流行关系型数据库,性能稳定可靠。MongoDB:NoSQL数据库,擅长处

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所
