谷歌RT-1模型让一个机器人干几份活,700条指令成功率达97%
机器学习 (ML) 研究的多个子领域(如计算机视觉和自然语言处理)的许多最新进展,都是建立在利用大型、多样化的数据集和能够有效吸收所有数据的表达模型。
但这种高性能模型方法在机器人技术领域的应用却相对较少。
原因很简单,首先缺乏大规模和多样化的机器人数据,限制了模型吸收广泛机器人经验的能力。
其次,缺乏可从此类数据集中学习并有效泛化的表达力强、可扩展且速度足够快的实时推理模型。
而这次,谷歌推出的Robotics Transformer 1 (简称RT-1)是一种多任务模型,它可以标记机器人输入和输出动作(例如,相机图像、任务指令和电机命令)以在运行时实现高效推理,并使实时控制成为可能。
RT-1吸收了大量数据,让机器人胜任不同环境下的多种任务,从而提升机器性能和泛化能力
简单来说,就是让一个机器人同时干几份活。
该模型是在一个包含130k个episode的大型真实世界机器人数据集上训练的,该数据集涵盖700多项任务,使用Everyday Robots (EDR) 的13台机器人在17个月内收集而成。
结果表明,与现有技术相比,RT-1可以显著改进对新任务、环境和对象的零样本泛化。
Github链接小编也贴心地放在下面啦,有兴趣的小伙伴赶紧去看看。
https://github.com/google-research/robotics_transformer
RT-1模型具体原理
RT-1建立在Transformer架构上,它能从机器人的相机中获取图像历史记录并以自然语言表达的任务描述作为输入,同时直接输出标记化的动作。
RT-1的架构类似于仅解码器序列模型(decoder-only sequence model)的架构,该模型针对具有因果掩蔽的标准分类交叉熵目标进行训练。
该模型将文本指令和一组图像作为输入,通过预训练的 FiLM EfficientNet 模型将它们编码为标记,并通过 TokenLearner 对其进行压缩,然后经Transformer输出动作标记。
其主要功能包括:图像词元化(Image Tokenization)、动作词元化(Action Tokenization)和词元压缩(Token Compression )。
- 图像tokenization:我们通过在 ImageNet 上预训练的 EfficientNet-B3 模型传递图像,然后将生成的 9×9×512 空间特征图展平为81个标记。图像分词器以自然语言任务指令为条件,并使用初始化为身份的 FiLM 层在早期提取与任务相关的图像特征。
- 动作tokenization:机器人的动作维度是手臂运动的 7 个变量(x、y、z、滚动、俯仰、偏航、夹具打开),3 个基本运动变量(x、y、偏航),以及一个额外的离散变量在三种模式之间切换。
- Token压缩:该模型自适应地选择图像Token的软组合,这些组合可以根据它们对使用元素注意模块TokenLearner 进行学习的影响进行压缩,从而使推理速度提高2.4倍以上。
我们使用人类通过远程操作提供的演示,并用机器人执行指令的文本描述对每一集进行注释。
而这个机器人执行任务靠的是,「7个自由度的手臂、一个两指夹持器和一个移动底座」。
数据集中表示的一组高级技能包括拾取和放置物品、打开和关闭抽屉、将物品放入和取出抽屉、将细长的物品直立放置、将物体打翻等操作。
整合异质数据源
为进一步推动RT-1,我们使用从另一个机器人收集的数据对其进行训练,以测试 (1) 模型在出现新数据源时是否保持其在原始任务上的性能,以及 (2) 模型是否在泛化方面得到提升具有新的和不同的数据。
我们转换收集的数据以匹配我们使用EDR收集的原始数据集的动作规范和边界,并用任务指令标记每个数据集。
然后在每个训练批次中将Kuka数据与EDR数据以1:2的比例混合,以控制原始EDR技能的回归。
图为从多个机器人收集数据时的训练方法
结果表明,RT-1能够通过观察其他机器人的经验来获得新技能。
当RT-1在Kuka的垃圾箱拣选数据和机器人教室的现有EDR数据上进行训练时,仅使用 EDR 数据进行训练时的22% 「准确率跃升了近2倍」,达到39%。
当单独使用来自Kuka的拣选数据训练RT-1,并使用来自EDR机器人的拣选数据对其进行评估时,准确率为0%。
实验结果
为更好地理解RT-1的泛化能力,我们针对三个基线研究了它的性能:Gato、BC-Z和BC-Z XL(即与 RT-1 具有相同数量参数的 BC-Z)。
并将其分为四个类别:
图为测试环境下RT-1与对照组的表现
- 可见任务表现(Seen tasks performance):在训练期间观测的任务表现;
-
不可见任务表现(Unseen tasks performance):在看不见的任务上的表现,其中技能和对象在训练集中是分开的;
- 稳健性(Robustness):在干扰因素介入期间的性能和背景变化(新厨房、照明、背景场景)的性能表现
- 远景场景(long-horizon scenarios):真实厨房中SayCan类自然语言指令的执行
RT-1 的高性能和泛化能力可以通过SayCan实现远距离、移动操作任务。
SayCan的工作原理是将语言模型置于机器人可供性中,并利用少量提示将以自然语言表达的长期任务分解为一系列低级技能。
我们在两个真实厨房中使用RT-1和其他两个基线(SayCan with Gato 和 SayCan with BC-Z)评估SayCan。
下面,“Kitchen2”构成了比“Kitchen1”更具挑战性的泛化场景。用于收集大部分训练数据的模拟厨房是在 Kitchen1 之后建模的。
可以看到,SayCan with RT-1在 Kitchen1中的执行成功率为 67%,优于其他基线。
由于新的看不见的厨房带来的泛化困难,SayCan with Gato 和 SayCan with BCZ 的性能下降,但RT-1的成功率并没有因此下降。
以上是谷歌RT-1模型让一个机器人干几份活,700条指令成功率达97%的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

在工业自动化技术领域,最近有两个热点很难被忽视:人工智能(AI)和英伟达(Nvidia)。不要改变原内容的意思,微调内容,重写内容,不要续写:“不仅如此,这两者密切相关,因为英伟达在不仅仅局限于其最开始的图形处理单元(GPU),正在将其GPU技术扩展到数字孪生领域,同时紧密连接着新兴的AI技术。”最近,英伟达与众多工业企业达成了合作,包括领先的工业自动化企业,如Aveva、罗克韦尔自动化、西门子和施耐德电气,以及泰瑞达机器人及其MiR和优傲机器人公司。Recently,Nvidiahascoll

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名
