首页 科技周边 人工智能 英伟达64个A100训练StyleGAN-T;九类生成式AI模型综述

英伟达64个A100训练StyleGAN-T;九类生成式AI模型综述

Apr 11, 2023 pm 12:13 PM
ai 模型

目录:

  1. Quantum machine learning beyond kernel methods
  2. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning
  3. Dash: Semi-Supervised Learning with Dynamic Thresholding
  4. StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis
  5. Open-Vocabulary Multi-Label Classification via Multi-Modal Knowledge Transfer
  6. ChatGPT is not all you need. A State of the Art Review of large Generative AI models
  7. ClimaX: A foundation model for weather and climate
  8. ArXiv Weekly Radiostation:NLP、CV、ML 更多精选论文(附音频)

论文 1:Quantum machine learning beyond kernel methods

  • 作者:Sofiene Jerbi 等
  • 论文地址:https://www.nature.com/articles/s41467-023-36159-y

摘要:本文中,来自奥地利因斯布鲁克大学的研究团队确定了一个建设性框架,该框架捕获所有基于参数化量子电路的标准模型:线性量子模型

研究人员展示了使用量子信息论中的工具如何将数据重新上传电路有效地映射到量子希尔伯特空间中线性模型的更简单图像中。此外,根据量子比特数和需要学习的数据量来分析这些模型的实验相关资源需求。基于经典机器学习的最新结果,证明线性量子模型必须使用比数据重新上传模型多得多的量子比特才能解决某些学习任务,而核方法还需要多得多的数据点。

研究结果提供了对量子机器学习模型的更全面的了解,以及对不同模型与 NISQ 约束的兼容性的见解。


图片

这项工作中研究的量子机器学习模型。

推荐:超越核方法的量子机器学习,量子学习模型的统一框架。

论文 2:Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning

  • 作者:Xiaosong Wu 等
  • 论文地址:https://www.nature.com/articles/s41467-023-36205-9

摘要:传感器内多任务学习不仅是生物视觉的关键优点,也是人工智能的主要目标。然而,传统的硅视觉芯片存在大量时间以及能量开销。此外,训练传统的深度学习模型在边缘设备上既不可扩展也不可负担。

本文中,中科院和香港大学的研究团队提出了一种材料算法协同设计来模拟人类视网膜的学习范例,并且低开销。基于具有有效激子解离和贯穿空间电荷传输特性的瓶刷形半导体 p-NDI,开发了一种基于可穿戴晶体管的动态传感器储层计算系统,该系统在不同任务上表现出优异的可分离性、衰减记忆和回波状态特性。

与忆阻有机二极管上的「读出功能」相结合,RC 可识别手写字母和数字,并对各种服装进行分类,准确率分别为 98.04%、88.18% 和 91.76%(高于所有已报告的有机半导体)。

图片

传统半导体和 p-NDI 的光电流响应比较,以及传感器内 RC 系统的详细半导体设计原理。

推荐:低能耗低时耗,中科院 & 香港大学团队使用新方法进行多任务学习的可穿戴传感器内储层计算。

论文 3:Dash: Semi-Supervised Learning with Dynamic Thresholding

  • 作者:Yi Xu 等
  • 论文地址:https://proceedings.mlr.press/v139/xu21e/xu21e.pdf

摘要:这篇论文创新性地提出用动态阈值(dynamic threshold)的方式筛选无标签样本进行半监督学习(semi-supervised learning,SSL)的方法,我们改造了半监督学习的训练框架,在训练过程中对无标签样本的选择策略进行了改进,通过动态变化的阈值来选择更有效的无标签样本进行训练。Dash 是一个通用策略,可以轻松与现有的半监督学习方法集成

实验方面,我们在 CIFAR-10、CIFAR-100、STL-10 和 SVHN 等标准数据集上充分验证了其有效性。理论方面,论文从非凸优化的角度证明了 Dash 算法的收敛性质。


图片

Fixmatch 训练框架

推荐:达摩院开源半监督学习框架 Dash,刷新多项 SOTA。

论文 4:StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

  • 作者:Axel Sauer 等
  • 论文地址:https://arxiv.org/pdf/2301.09515.pdf

摘要:扩散模型在文本到图像生成方面是最好的吗?不见得,英伟达等推出的新款 StyleGAN-T,结果表明 GAN 仍具有竞争力。StyleGAN-T 只需 0.1 秒即可生成 512×512 分辨率图像:

图片

推荐:GAN 强势归来?英伟达耗费 64 个 A100 训练 StyleGAN-T,优于扩散模型。

论文 5:Open-Vocabulary Multi-Label Classification via Multi-Modal Knowledge Transfer

  • 作者:Sunan He 等
  • 论文地址:https://arxiv.org/abs/2207.01887

摘要:在多标签分类系统中,经常遇到大量在训练集中未曾出现的标签,如何准确地识别这些标签是非常重要也极富挑战性的问题。

为此,腾讯优图实验室联合清华大学和深圳大学,提出了一种基于多模态知识迁移的框架 MKT,利用图文预训练模型强大的图文匹配能力,保留图像分类中关键的视觉一致性信息,实现多标签场景的 Open Vocabulary 分类。本工作已入选 AAAI 2023 Oral。


图片

ML-ZSL 和 MKT 方法比较。

推荐:AAAI 2023 Oral | 如何识别未知标签?多模态知识迁移框架实现新 SOTA。

论文 6:ChatGPT is not all you need. A State of the Art Review of large Generative AI models

  • 作者:Roberto Gozalo-Brizuela 等
  • 论文地址:https://arxiv.org/abs/2301.04655

摘要:过去两年,AI 领域里已经出现大量大型生成模型,如 ChatGPT 或 Stable Diffusion。具体而言,这些模型能够执行像通用问答系统或自动创建艺术图像等任务,这些任务正在彻底改变很多领域。

在近日由西班牙 Comillas Pontifical University 研究人员提交的综述论文中,作者试图以简洁的方式描述生成式 AI 对当前很多模型的影响,并对最近发布的主要生成式 AI 模型进行分类


图片

分类图示。

推荐:ChatGPT is not all you need,一文综述 6 大公司 9 类生成式 AI 模型。

论文 7:ClimaX: A foundation model for weather and climate

  • 作者:Tung Nguyen 等
  • 论文地址:https://arxiv.org/abs/2301.10343

摘要:微软自主系统与机器人研究小组以及微软研究院科学智能中心开发了 ClimaX,这是一种灵活且可推广的天气和气候科学深度学习模型,可以使用跨越不同变量、时空覆盖和物理基础的异构数据集进行训练。

ClimaX 使用新颖的编码和聚合块扩展了 Transformer 架构,这些块允许有效使用可用计算,同时保持通用性。ClimaX 在源自 CMIP6 的气候数据集上使用自我监督学习目标进行了预训练。然后可以对预训练的 ClimaX 进行微调,以解决广泛的气候和天气任务,包括那些涉及预训练期间看不到的大气变量和时空尺度的任务。

图片

预训练期间使用的 ClimaX 架构

推荐:微软团队发布第一个基于 AI 的天气和气候基础模型 ClimaX。

以上是英伟达64个A100训练StyleGAN-T;九类生成式AI模型综述的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

phpmyadmin建立数据表 phpmyadmin建立数据表 Apr 10, 2025 pm 11:00 PM

要使用 phpMyAdmin 创建数据表,以下步骤必不可少:连接到数据库并单击“新建”标签。为表命名并选择存储引擎(推荐 InnoDB)。通过单击“添加列”按钮添加列详细信息,包括列名、数据类型、是否允许空值以及其他属性。选择一个或多个列作为主键。单击“保存”按钮创建表和列。

怎么创建oracle数据库 oracle怎么创建数据库 怎么创建oracle数据库 oracle怎么创建数据库 Apr 11, 2025 pm 02:33 PM

创建Oracle数据库并非易事,需理解底层机制。1. 需了解数据库和Oracle DBMS的概念;2. 掌握SID、CDB(容器数据库)、PDB(可插拔数据库)等核心概念;3. 使用SQL*Plus创建CDB,再创建PDB,需指定大小、数据文件数、路径等参数;4. 高级应用需调整字符集、内存等参数,并进行性能调优;5. 需注意磁盘空间、权限和参数设置,并持续监控和优化数据库性能。 熟练掌握需不断实践,才能真正理解Oracle数据库的创建和管理。

oracle数据库怎么创建 oracle数据库怎么建库 oracle数据库怎么创建 oracle数据库怎么建库 Apr 11, 2025 pm 02:36 PM

创建Oracle数据库,常用方法是使用dbca图形化工具,步骤如下:1. 使用dbca工具,设置dbName指定数据库名;2. 设置sysPassword和systemPassword为强密码;3. 设置characterSet和nationalCharacterSet为AL32UTF8;4. 设置memorySize和tablespaceSize根据实际需求调整;5. 指定logFile路径。 高级方法为使用SQL命令手动创建,但更复杂易错。 需要注意密码强度、字符集选择、表空间大小及内存

oracle数据库的语句怎么写 oracle数据库的语句怎么写 Apr 11, 2025 pm 02:42 PM

Oracle SQL语句的核心是SELECT、INSERT、UPDATE和DELETE,以及各种子句的灵活运用。理解语句背后的执行机制至关重要,如索引优化。高级用法包括子查询、连接查询、分析函数和PL/SQL。常见错误包括语法错误、性能问题和数据一致性问题。性能优化最佳实践涉及使用适当的索引、避免使用SELECT *、优化WHERE子句和使用绑定变量。掌握Oracle SQL需要实践,包括代码编写、调试、思考和理解底层机制。

MySQL数据表字段操作指南之添加、修改与删除方法 MySQL数据表字段操作指南之添加、修改与删除方法 Apr 11, 2025 pm 05:42 PM

MySQL 中字段操作指南:添加、修改和删除字段。添加字段:ALTER TABLE table_name ADD column_name data_type [NOT NULL] [DEFAULT default_value] [PRIMARY KEY] [AUTO_INCREMENT]修改字段:ALTER TABLE table_name MODIFY column_name data_type [NOT NULL] [DEFAULT default_value] [PRIMARY KEY]

MySQL数据库中的嵌套查询实例详解 MySQL数据库中的嵌套查询实例详解 Apr 11, 2025 pm 05:48 PM

嵌套查询是一种在一个查询中包含另一个查询的方式,主要用于检索满足复杂条件、关联多张表以及计算汇总值或统计信息的数据。实例示例包括:查找高于平均工资的雇员、查找特定类别的订单以及计算每种产品的总订购量。编写嵌套查询时,需要遵循:编写子查询、将其结果写入外层查询(使用别名或 AS 子句引用)、优化查询性能(使用索引)。

oracle数据库表的完整性约束有哪些 oracle数据库表的完整性约束有哪些 Apr 11, 2025 pm 03:42 PM

Oracle 数据库的完整性约束可确保数据准确性,包括:NOT NULL:禁止空值;UNIQUE:保证唯一性,允许单个 NULL 值;PRIMARY KEY:主键约束,加强 UNIQUE,禁止 NULL 值;FOREIGN KEY:维护表间关系,外键引用主表主键;CHECK:根据条件限制列值。

oracle是干嘛的 oracle是干嘛的 Apr 11, 2025 pm 06:06 PM

Oracle 是全球最大的数据库管理系统(DBMS)软件公司,其主要产品包括以下功能:关系数据库管理系统(Oracle 数据库)开发工具(Oracle APEX、Oracle Visual Builder)中间件(Oracle WebLogic Server、Oracle SOA Suite)云服务(Oracle Cloud Infrastructure)分析和商业智能(Oracle Analytics Cloud、Oracle Essbase)区块链(Oracle Blockchain Pla

See all articles