人工智能是专家协助和患者护理的推荐处方
译者 | 崔皓
审校 | 孙淑娟
开篇
人工智能 (AI)为各个行业的创新提供无限动力,当然也包括医疗保健领域。医疗专业人员受益于机器学习 (ML) 的应用,让他们可以处理电子健康记录 (EHR) ,也提升诊断和治疗方面的能力。AI 不仅消除了人为因素对医疗保健的影响,自动化和 ML 同时也在提高护士和医生的工作效率,并为他们提供更深层次的洞察力,从而有更多的时间为患者提供更好、更个性化的医疗服务。
人工智能对医疗保健带来的好处不仅于此,在处理医疗文档方面,人工智能的自动化处理方式可以减轻重复性任务,同时也减少人为的错误。同时,人工智能还被用于提高外科医生工作效率和加速医疗程序方面,让患者体验个性化治疗并简化就诊流程。除此之外,人工智能驱动的学习算法正在改进诊断成像和识别感染模式。
虽然人工智能给医疗保健带来了诸多便利,但是人工智能的解决方案受到软件开发成本和支持程序复杂性的限制。此外,医学专家经常抱怨人工智能技术缺乏可解释性以及对最终解决方案缺乏敏感性分析。但是幸运的是,无代码的人工智能解决方案正在将人工智能控制权交到医生手中。
人工智能如何改变医疗保健领域
人工智能正在许多方面提高护理效率和质量,在管理方便的提升尤为显著。
美国的普通护士平均将 25% 的时间花在监管和行政任务上,人工智能可以将许多任务自动化。电子健康记录 (EHR) 和自动化监管系统的应用减少了护理人员的管理工作量,让他们有更多时间照顾病人。将重复性任务进行自动化处理,例如填写录取表格、记笔记和安排后续看诊,还可以消除数据输入错误并简化管理任务。虽然人工智能使管理任务更加高效,但护士仍然需要负责病人的护理工作。如果提供无代码 AI 流程等自助服务工具,护士就可以根据特定的管理程序设计自己的工作流程。
人工智能也被用于简化医疗方面的工作。虚拟护士可以询问病人症状并提供有关健康问题和药物的信息,当患者无法预约看医生时,这也是一个有效的问诊方式。此外,利用机器学习技术和生物传感技术获取病人数据,可以有效地实现个性化治疗。当然,人工智能也被用于健康监测和促进患者健康等领域。
人工智能和机器学习可以处理海量的机器数据。医疗保健领域目前产生了全球约 30% 的数据,预计到 2025 年,医疗保健数据的复合年增长率 (CAGR) 将达到 36%。人工智能可以应用深度学习方法来评估和规范化大型非结构化数据集,从而使用这些数据进行分析和临床应用。
人工智能还提高了医疗诊断的准确性。例如,使用人工智能技术,计算机可用于扫描 MRI,从而提升检测肿瘤的准确度。智能设备也被部署在 ICU 和临床环境中,以监测患者并识别诸如心律失常发生、治疗并发症或败血症感染等问题的发生。同时人工智能也在加强医生拯救能力方面发挥着重要的作用,为此人工智能提供了自动异常检测,它可以在结肠镜检查期间提供实时结肠息肉检测,并通过使用先进的成像技术和人工智能引擎在乳房 X 光检查中检测细微的癌症细胞,而在使用这一技术之前这些细胞经常被致密的乳腺组织掩盖,导致难以被发现。
药物探索是人工智能产生重大影响的另一个领域。例如,制药公司正在使用人工智能设计新分子来治疗癌症和其他疾病。
在医疗保健中使用人工智能的挑战
虽然人工智能继续在医疗保健领域找到新的应用,但仍然面临如下挑战:
- 数据治理——HIPAA 等隐私法规旨在保护患者数据,但也可能阻碍自动化应用的发展。为了让人工智能继续在治疗和 EHR 管理中找到新的应用,需要考虑隐私法带来的影响。
- 优化电子记录——数据往往分散在多个数据库中,每类数据都有自己的数据结构。因此,需要对碎片化的信息进行集中化和规范化的处理,从而支持对患者的治疗。
- 缺乏数据科学家——人工智能专家持续短缺。数据科学家的需求量很大,美国劳工统计局估计到 2030 年需求将增长 33%。
为了应对这些挑战并充分利用 AI 技术,医疗保健专业人员正在使用无代码平台构建自己的 AI 解决方案。让医学专家负责应用程序设计,能够更轻松、更快速地创建人工智能驱动的流程,以满足管理和患者的需求,并符合法规要求。
无代码人工智能的价值
有很多情况都需要无代码 AI的应用:
AI 非常适合重复性任务,例如数据输入、患者记录维护或表格填写。人工智能越来越多地用于捕获和处理数据,包括数据分类、数据提取和数据验证,以将信息与其他数据源进行匹配。
人工智能对诊断很有效,因为它可以整合和分析来自多个数据源的信息。例如,人工智能可以将症状与可能的原因相匹配,使医生能够从超出其专业知识的诊断数据中获取信息,并减少误诊的可能性。人工智能可以进行“假设”场景的模拟,通过这种方式帮助查明疾病原因。
机器学习让通过学习算法来改善结果成为可能。与训练数据的交互可提供额外的见解并改善其结果。机器学习算法有助于诊断和治疗,并创建患者的轮廓。人工智能提升工作效率,节省护士和医生的时间,从而降低医院运营成本。
随着人工智能越来越多地应用于医疗保健领域,您还可以期待看到更多低代码/无代码工具的出现,以帮助医疗保健专业人员设计自己的解决方案。让专家负责构建自己的应用程序,这种不依赖开发人员的模式将是AI 应用的最佳方式。
很明显,人工智能正在改变我们的医疗保健方式。使用 AI 和 ML 自动执行日常任务并添加新的诊断和治疗解决方案将使医生和护士的工作效率倍增,从而有更多的时间做他们最擅长的事情——治疗患者并改善他们的生活。
译者介绍
崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。曾任惠普技术专家。乐于分享,撰写了很多热门技术文章,阅读量超过60万。《分布式架构原理与实践》作者。
原文标题:Doctors Find Artificial Intelligence is the Best Prescription for Expert Assistance and Patient Care,作者:Amir Atai
以上是人工智能是专家协助和患者护理的推荐处方的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
