机器学习如何防止列车延误
使用机器学习可以帮助预测列车延误,检测故障的早期迹象,并根据需求变化规划路线,可以在长期和短期内通过减少列车延误和确保高服务质量来改善铁路旅行。
晚点的列车影响着全世界数百万人,而运营商几乎不能做什么来减少这种晚点。这是因为铁路延误是由许多相互关联的因素造成的,因此很难评估影响和制定解决方案。然而,通过使用机器学习支持的人工智能应用,可以帮助铁路运营商通过实现智能决策和迅速行动来减少列车延误,从而改善服务。
机器学习如何防止火车延误
列车延误是由多种因素造成的,包括基础设施和机械故障、不利的天气、乘客造成的延误和次优化的调度。通过使用机器学习,铁路运营商可以优化和改善铁路网络,减少列车延误。
1、准确预测列车延误
在多列火车共用同一路线的情况下,一趟晚点的列车可能会延误其后预定的所有列车。根据经过某条线路的列车的数量和频率,列车延误可能会造成广泛的后果,给数千甚至数百万乘客造成不便。机器学习被用来精确估计火车到站的时间。
为了准确预测延误时间,每趟列车都要不断分析大量的历史数据,以及实时位置和性能数据。这使得运营商可以控制和管理轨道交通,尽量减少一趟列车晚点对其他列车时刻表的影响。这将确保整个系统遵守时间表,即使一些列车,由于不可预见的原因延误。
2、降低风险,确保及时维护
铁路网络中机车或轨道的故障以及缺陷都可能导致某条线路的完全停止运行。这导致了长期延误,恢复的估计时间取决于各种因素。机器学习在汽车行业的应用已经证明了它在预测性维修方面的有效性,预测性维护可应用于机车,以消除故障造成的延误。机器学习可以通过持续监测数据点来消除机械故障,这些数据点可以预示任何即将发生的故障。积极主动地维护列车和轨道,尽量减少紧急维修的需要。
3、更好地管理列车时刻表
通过机器学习收集和分析的大量实时数据不仅可以改善当前的铁路运营,还可以帮助进行长期改进,如铺设新线路和规划新线路。通过机器学习获得的洞察力使铁路运营商和政府能够规划和优化可用列车和相关基础设施的使用。
次优路线可以重新规划,或者设计新的路线,以确保安全。这可以通过强化学习来实现,强化学习是一种机器学习,可以通过评估之前操作的结果来确定问题的最优解决方案。优化线路和时刻表有助于最大限度地减少因乘客拥挤和铁路交通不平衡而造成的列车延误。
使用数据分析使列车准点运行并不是一个全新或未来的概念,而是已经在发生的事情。除了尽量减少列车延误,分析还使铁路运营商能够提供更好的客户体验,如列车实时跟踪和通过移动应用收集反馈。在机器学习和大数据的帮助下,火车旅行将变得更加方便。
以上是机器学习如何防止列车延误的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
