目录
人工智能必须负责
投资回报率是人工智能的正确指标吗?
人工智能的投资回报率难以衡量
必须跟踪数据科学活动
人工智能的结果是人们最关心的
人工智能的ROI仍然难以捉摸
首页 科技周边 人工智能 人工智能与ROI的真相:人工智能真的能实现吗?

人工智能与ROI的真相:人工智能真的能实现吗?

Apr 11, 2023 pm 07:46 PM
人工智能 roi

人工智能与ROI的真相:人工智能真的能实现吗?

现如今,企业组织比以往任何时候都更加信任和投资人工智能(AI) 和机器学习 (ML) 的潜力。

根据2022 年 IBM 全球人工智能采用指数,35% 的企业报告称目前在其业务中使用人工智能,另有 42% 的公司表示他们正在探索人工智能。与此同时,麦肯锡的一项调查发现,56% 的受访者表示,他们在 2021 年至少在一项职能中采用了人工智能,高于 2020 年的 50%。

但是,对人工智能的投资能带来直接影响企业底线的真实ROI吗?

根据 Domino Data Lab 最近的 REVElate 调查,该调查对 5 月份纽约市 Rev3 会议的与会者进行了调查,许多受访者似乎都这么认为。事实上,近一半的人预计数据科学会带来两位数的增长。近五分之四的受访者 (79%) 表示,数据科学、机器学习和人工智能对其公司未来的整体增长至关重要,36% 的受访者称其为最关键的因素。

当然,实施人工智能并非易事。其他调查数据显示了坚定信心的另一面。例如,人工智能工程公司 CognitiveScale最近的调查数据发现,尽管高管们知道,数据质量和部署是推动数字化转型的成功应用开发的关键成功因素,但超过76%的高管不确定如何在12-18个月的时间内实现目标。此外,32%的高管表示,人工智能系统投入生产所花的时间比预期要长。

人工智能必须负责

Cognitive Scale的首席执行官鲍勃·皮恰诺告诉媒体,人工智能带来的ROI是可能的,但必须根据业务目标对其进行准确描述和个性化。

他说:“如果业务目标是利用历史数据进行更长期的预测,并提高预测精度,那么人工智能就可以发挥作用。”“但人工智能必须负责任地推动业务效率——ML模型的准确率达98%是不够的。”

相反,投资回报率可能是,例如,为了提高呼叫中心的效率,人工智能驱动的功能可确保减少平均呼叫处理时间。

“这种投资回报率是他们在最高管理层谈论的内容,”他解释道。“他们不会谈论模型是否准确、稳健或漂移。”

Cognitive Scale 的联合创始人兼首席运营官 Shay Sabhikhi 补充说,76%的受访者表示难以扩大他们在人工智能方面的投入,他对此并不感到惊讶。“这正是我们从企业客户那里听到的,”他说。他解释说,其中一个问题是数据科学团队和其他不知道如何处理他们开发的模型的组织之间的摩擦。

他说:“这些模型可能有最好的算法和精确召回率,但却被束之高阁,因为它们实际上被扔给了开发团队,然后他们不得不匆忙地把应用组装起来。”

然而,在这一点上,组织必须对他们在人工智能方面的投资负责,因为人工智能不再是一系列科学实验,Picciano 指出。“我们称之为从实验室走向生活,”他说。“我参加了一个首席数据分析官会议, 他们都在问,我该如何扩大规模?如何实现人工智能产业化?”

投资回报率是人工智能的正确指标吗?

然而,并不是所有人都同意ROI是衡量AI是否在组织中驱动价值的最佳方法。安永(EY)全球首席技术官尼古拉•莫里尼•比安齐诺(Nicola Morini Bianzino)表示,用“用例”来衡量人工智能和企业,然后通过ROI来衡量,这是对待人工智能的错误方式。

“对我来说,人工智能是一套技术,几乎可以在企业的任何地方部署——不会将用例与相关的 ROI 分析隔离开来,”他说。

相反,他解释说,组织机构只需要在任何地方使用人工智能。“这几乎就像云计算一样,两三年前,我与客户进行了很多对话,他们问,‘ROI是什么?我迁移到云计算的商业案例是什么?现在,大流行之后,这种对话不再发生了。每个人都说,‘我必须这么做。’”

此外,Bianzino指出,讨论AI和ROI取决于你所说的“使用AI”。

他说:“假设你试图应用一些自动驾驶能力——也就是说,计算机视觉是人工智能的一个分支。”“这是一个商业案例吗?不,因为没有人工智能就无法实现自动驾驶。”安永(EY)这样的公司也是如此,它吸收大量数据并向客户提供建议——这离不开人工智能。他说:“这是你无法从过程中分离出来的东西——它是内在的。”

此外,根据定义,人工智能在第一天就没有生产力或效率。获取数据、训练模型、发展模型和扩大模型都需要时间。他说:“并不是有一天你可以说,我完成了人工智能,100%的价值就在那里——不,这是一种持续的能力,随着时间的推移会变得更好。”“就能够产生的价值而言,并没有真正的终点。”

Bianzino说,在某种程度上,人工智能正在成为商业成本的一部分。“如果你从事的是一个涉及数据分析的行业,你不可能不具备人工智能能力,”他解释说。“你能把这些模型的商业案例分离出来吗?这很难,我认为没有必要。对我来说,这几乎是运营企业的基础设施成本。”

人工智能的投资回报率难以衡量

企业 MLops 提供商 Domino Data Lab 的数据科学战略和宣传负责人 Kjell Carlsson 说,归根结底,企业想要的是衡量ROI的商业影响——它的贡献有多大。但有一个问题是,这可能与开发模型所做的工作完全脱节。

他说:“因此,如果你创造一个模式,将点击率提高一个百分点,你就等于为企业增加了数百万美元的利润。”“但你也可以创建一个良好的预测性维修模型,帮助在需要维修的机器发生之前提前发出警告。”在这种情况下,金钱价值对组织的影响可能完全不同,“即使其中一个可能最终成为一个更困难的问题,”他补充说。

总的来说,组织确实需要一个“平衡计分卡”来跟踪AI的生产。他说: “因为如果你没有将任何东西投入生产,那么这可能表明你遇到了问题,”他说。“另一方面,如果你在生产中投入过多,这也可能表明存在问题。”

例如,数据科学团队部署的模型越多,他们需要管理和维护的模型就越多。“所以你在去年部署了这么多模型,所以你实际上无法承担这些其他高价值的模型,”他解释道。

但衡量 AI 投资回报率的另一个问题是,对于许多数据科学项目来说,结果并不是一个投入生产的模型。“如果你想对去年的交易进行定量的盈亏分析,你可能需要对此进行严格的统计调查,”他说。“但没有一个模型可以投入生产,你是在利用人工智能来获得你在这个过程中获得的见解。”

必须跟踪数据科学活动

尽管如此,如果不跟踪数据科学活动,组织就无法衡量人工智能的作用。“目前的一个问题是,真正收集和分析的数据科学活动很少,”Carlsson说。“如果你问人们,他们会说他们真的不知道模型的性能如何,或者他们有多少项目,或者你的数据科学家在上周完成了多少CodeCommits。”

其中一个原因是数据科学家需要使用非常不相关的工具。“这就是为什么Git作为存储库越来越受欢迎的原因之一,它是组织中数据科学家的唯一真实来源,”他解释说。像Domino Data Lab这样的MLops工具提供了支持这些不同工具的平台。他说:“各组织能够在多大程度上创建这些更加集中化的平台……这很重要。

人工智能的结果是人们最关心的

Wallaroo首席执行官兼创始人Vid Jain曾在美林从事近十年的高频交易业务,他表示,在美林,他的职责是大规模部署机器学习,并以积极的ROI实现这一目标。

真正的挑战并不是发展数据科学、清理数据或构建交易存储库(现在称为数据湖)。他说,到目前为止,最大的挑战是采用这些模型,将它们运作起来,并交付业务价值。

他说:“实现投资回报率是非常困难的——90%的人工智能项目都没有产生投资回报率,或者它们产生的投资回报率不足以让投资物有所值。”“但这是每个人的首要想法。答案不是一回事。”

他解释说,一个根本问题是,许多人认为,对机器学习进行操作与对一种标准应用进行操作没有太大区别。他补充说,这两者有很大区别,因为人工智能不是静态的。

他说:“这几乎就像照料一个农场,因为数据是活的,数据会变化,而你还没有完成。”“这不像你建立了一个推荐算法,然后人们的购买行为就会被及时冻结。人们改变了他们的购买方式。突然间,你的竞争对手进行了促销活动。消费者停止向你购买东西。他们转向了竞争对手。你必须经常去维护它。”

最终,每个组织都需要决定如何将自己的文化与实现AI的最终目标相结合。他说:“然后你真的必须授权给人们来推动这种转变,然后让那些对你现有业务线至关重要的人感到他们将从人工智能中获得一些价值。”

他补充说,大多数公司还处于起步阶段。“我认为大多数公司还没有做到这一点,但在过去6到9个月里,我肯定看到了一种转变,人们开始认真对待业务结果和业务价值。”

人工智能的ROI仍然难以捉摸

但是,对于许多组织来说,如何衡量人工智能的ROI仍然是一个难以捉摸的问题。“对一些公司来说,有一些基本的问题,比如他们甚至无法将他们的模型投入生产,或者他们可以,但他们是盲目的,或者他们成功了,但现在他们想要扩大规模,” Jain 说。“但就投资回报率而言,机器学习往往没有相关的损益。”

他解释说,AI计划通常是卓越中心的一部分,ROI由业务部门掌握,而在其他情况下,它很难衡量。

“问题是,人工智能是业务的一部分吗?还是一种效用?如果你是数字原生代,人工智能可能是业务运行燃料的一部分,”他说。“但在一个拥有传统业务或正在转型的大型组织中,如何衡量投资回报率是他们必须解决的一个基本问题。”

以上是人工智能与ROI的真相:人工智能真的能实现吗?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles