谈谈人工智能客服指标
我们经常收到业务询问,智能客服的评估标准是什么。这是一个非常难以回答的问题,因为我们需要证明使用智能客服的合理性并确保使用智能客服将为企业带来怎样的效益。
尽管智能客服解决方案没有“真正的”评估标准,在这里我列举一些案例,希望能帮助大家从这些案例中能给你一些提示。
首先,什么是智能客服?
智能客服是一种解决方案或一组解决方案,它能让用户获得访问信息,甚至自主执行一些简单的任务,而无需客服人员的帮助。
那么智能客服可以处理或执行的查询或任务有哪些?
在不联系客服人员的情况下跟踪包裹、请求报价或在线支付账单,这些都是我们定期执行的业务任务。
在客户查询方面,并非所有查询都可以通过智能客服来处理,因为一些复杂的问题仍然需要人工干预。但是,智能客服解决方案在解决第 1 层重复查询方面是非常有效。这些都是非常常见且频率非常高的请求类型,有超过80%的用户问题这些问题,占用了大量资源,我们完全可以使用自动化来回答这些问题。
哪些指标可以量化智能客服指标?
在尝试量化智能客服的指标时,每家企业都有自己的指标评估标准。以下是一些常用的指标,是需要定期更新数据及监控的。
呼叫偏转率
“呼叫转移”是指将客户的查询路由到备用服务渠道,例如聊天机器人、常见问题解答、知识中心数据库。呼叫转移的目标是确保客户以最有效的方式收到他们正在寻求的答案,并减少路由到人工座席的呼叫数量。这个指标指的是“通话”,也包括任何其他通讯根据,例如实时聊天和电子邮件。
测量呼叫偏转率可能很复杂,因为我们正在尝试测量没有发生的事情!根据DB Kay & Associates的说法,一种方法是估计智能客服成功的用户百分比和转人工的用户百分比。这两个百分比之间的差异表示偏转率。
顾客满意度
推进使用智能客服渠道对于任何企业来说都是一个令人期待的项目,它能改善/提高客户体验。但是,如果客户对智能客服提供给他们的工具不满意,如果他们发现太难使用或效率低下,那么智能客服渠道就不能被认为是成功的。必须通过调查、直接反馈和净推荐值 (NPS) 跟踪每个智能客服渠道的客户满意度,以便清楚地了解哪些渠道最成功以及哪些渠道需要改进。
智能客服成功率
确定智能客服成功与否的一种简单方法是跟踪智能客服渠道处理了多少客户查询,而没有上报给人工代理。例如,这可以是“如何订购”常见问题解答导致订单而不是客户发起的聊天会话的次数百分比,或者知识库搜索导致有用文章的次数百分比,由用户评分指示文章“有用”或表明“这解决了我的问题”。
目前很多解决方案都会自动跟踪、计算并在提供相关报表,以及许多其他有用的指标。
如何计算智能客服比率
让我们首先定义可以由客户自己使用智能客服渠道解决问题的百分比。如前所述,并非所有查询都可以通过智能客服处理,更复杂的查询需要人工干预。多年人工智能客服经验告诉我们,这个百分比在很大程度上取决于业务场景、行业经验甚至APP使用,但通常,50% 查询可以由客户自行解决。
在这 50% 中,我们需要量化有多少是冗余或重复的。如前所述,人工坐席收到的大约 80% 的查询属于该类别。这些是适合智能客服的。
智能客服的最大用处将是这两个百分比的乘积,即 0.5 x 0.8 = 0.4,因此 40% 将是可以预期的最大智能客服率。
最后,您需要考虑为您的工具提供动力的人工智能的效率。借助正确的 AI、正确的内容和功能强大的行业知识库,您的智能客服解决方案对这些重复查询的回答率可高达 80%。
因此,32% (0.4 x 0.8 = 0.32) 是智能客服比率的一个很好的目标。
当然,这些只是示例,根据业务、行业或支持您的智能客服解决方案的技术类型,结果可能会有很大差异,这可以为您提供了一个很好的对比基础。
以上是谈谈人工智能客服指标的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
