目录
威胁1模型中毒
威胁2隐私泄露
威胁3数据篡改
威胁4内部威胁
威胁5针对性蓄意攻击
威胁6大规模采用
威胁7AI驱动的攻击
首页 科技周边 人工智能 人工智能应用面临七大数据安全威胁

人工智能应用面临七大数据安全威胁

Apr 11, 2023 pm 08:01 PM
人工智能 安全 数据

自动驾驶技术、智能助理、人脸识别、智能工厂、智慧城市等人工智能技术现已广泛落地,这些令人难以置信的技术正在快速改变我们的生活。但相关领域安全事件也在快速增加,这使得研究人员和使用者对人工智能的安全性担忧不断提高。人工智能应用带来的红利和其引发的安全隐患,犹如一个硬币的两面,需要全行业高度关注并找到有效的应对方法。

日前,安全研究人员梳理总结了目前人工智能技术在实践应用中经常要面对的7个数据安全威胁。

威胁1模型中毒

模型中毒(Model poisoning)是一种对抗性攻击形式,旨在操纵机器学习模型的结果。威胁行为者可以尝试向模型中注入恶意数据,进而导致模型对数据进行错误分类并做出错误的决策。例如,工程图像可以欺骗机器学习模型,将它们分类到与人类最初分类不同的类别中(例如,将猫的图像标记为老鼠)。研究发现,这是一种欺骗AI系统的有效方法,因为在输出之前,不可能判断特定的输入是否会导致错误的预测。

为了防止恶意行为者篡改模型输入,企业组织应该实施严格的访问管理策略来限制对训练数据的访问。

威胁2隐私泄露

隐私保护是一个敏感的问题,需要额外的关注和重视,尤其是AI模型中包含有未成年人的数据时,问题就更复杂了。例如,针对青少年的一些借记卡选项,银行必须确保其安全标准符合监管合规要求。所有以任何形式或途径收集客户信息的公司都需要制定数据保护政策。这样,客户就可以知道组织如何处理他们的数据。然而,用户如何知道他们的数据是否流入了人工智能算法的应用中?很少(或者可以说几乎没有)隐私策略包含这些信息。

我们正在步入人工智能驱动的时代,对于个人来说,了解企业如何使用人工智能、人工智能的功能及其对数据的影响将变得非常重要。同样地,攻击者可能会试图使用恶意软件窃取包含信用卡号码或社会安全号码等个人信息的敏感数据集。企业组织必须定期进行安全审计,并在人工智能开发的所有阶段实施强有力的数据保护实践。隐私风险可能发生在数据生命周期的任何阶段,因此为所有利益相关者制定统一的隐私安全策略非常重要。

威胁3数据篡改

数据操纵、暴露和篡改所带来的风险,在AI规模化应用背景下正在被不断放大,因为这些系统需要基于大量数据进行分析决策,而这些数据很容易被恶意行为者操纵或篡改。此外,算法偏见是人工智能规模化应用中所面临的另一个主要问题。人工智能算法和机器学习程序应该是客观和公正的,但事实却并非如此。

人工智能算法的数据篡改威胁是一个巨大的问题,这没有简单的解决方案,但它需要引起重视。如何确保输入算法的数据是准确、可靠且不被篡改的?如何确保数据不会以令人讨厌的方式使用?所有这些问题都是非常现实的问题,但目前行业还没有找到明确的答案。

威胁4内部威胁

就数据安全而言,来自内部威胁无疑是最危险的一种,也是代价最高昂的一种类型。根据最新的《内部威胁成本:全球报告》显示,在过去两年中,内部威胁事件的数量上升了44%,每起事件的平均损失成本为1538万美元。

内部威胁之所以如此危险,是因为他们的动机不一定是金钱,还可能是出于报复、好奇心或人为错误等其他因素。正因如此,它们比外部的攻击者更难预测和阻止。

对于那些涉及公民健康的公司来说,内部威胁无疑是更有害的。以医疗保健服务商HelloRache为例,该公司使用了AI模式的虚拟记录员(virtual scribes,协助医生处理计算机相关任务的助手)工具,因此他们可以远程协助医生护理病人,做病情记录工作。但如果内部人员找到了方法,可能会导致系统被错误连接,甚至可以监控获取患者的医疗信息。

威胁5针对性蓄意攻击

一项研究数据显示,86%的企业组织开始将人工智能作为未来数字化发展的“主流”技术,并加大投资各种数据驱动的AI技术,以帮助企业做出更好的决策、改善客户服务并降低成本。但有一个问题:对人工智能系统的蓄意攻击正在增加,如果没有适当的控制措施,它们可能会为组织带来超百万美元的损失。

“蓄意攻击”是指有目的地通过侵入人工智能系统来破坏一个组织的业务运作,目的是获取领先于对手的竞争优势。在蓄意攻击场景中,对AI和ML的数据安全威胁可能尤其具有破坏性。因为这些系统中使用的数据通常是专有的,具有很高的价值。当人工智能系统遭到针对性的蓄意攻击时,其后果不仅仅是数据被窃取,而是公司的竞争能力被破坏。

威胁6大规模采用

人工智能是正在快速增长的行业,这意味着它们仍然很脆弱。随着AI应用越来越受欢迎,并在世界范围内被采用,黑客将会找到新的方法来干扰这些程序的输入和输出。AI通常是一套复杂的系统,以至于开发人员很难知道他们的代码在各种应用情况下会如何表现。当无法预测会发生什么时,就很难阻止它的发生。

保护企业免受大规模应用威胁的最佳方法是结合良好的编码实践、测试流程,并在发现新漏洞时及时更新。当然,不要放弃传统形式的网络安全预防措施,例如使用托管数据中心来保护服务器免受恶意攻击和外部威胁。

威胁7AI驱动的攻击

研究人员发现,恶意攻击者正在将人工智能武器化,帮助他们设计和实施攻击。在这种情况下,“设计攻击”指的是选择一个目标,确定他们试图窃取或破坏什么数据,然后决定一种传输方法。非法攻击者可以使用机器学习算法寻找绕过安全控制的方法来进行攻击,或者使用深度学习算法,根据真实世界的样本创建新的恶意软件。安全专家必须不断防御愈发智能的机器人,因为一旦他们阻止了一种攻击,另一种新的攻击就会出现。简而言之,人工智能使攻击者在当前安全保障措施中寻找漏洞变得更容易。

参考链接:

​https://www.php.cn/link/d27b95cac4c27feb850aaa4070cc4675​

以上是人工智能应用面临七大数据安全威胁的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

AI初创集体跳槽OpenAI,Ilya出走后安全团队重整旗鼓! AI初创集体跳槽OpenAI,Ilya出走后安全团队重整旗鼓! Jun 08, 2024 pm 01:00 PM

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles