这个Python神器,能让你摸半天鱼!
我敢以我的荣誉保证,用了它之后,你写代码的效率可以蹭蹭蹭地提升!
Pampy 是哪路神仙
首先普及一下模式匹配。
模式匹配即给定某种模式,用这种模式去检查序列或字符串是否符合这种模式,这种技术在自然语言处理中经常使用。
Pampy 是 Python 的一个模式匹配类库,一个只有150行的类库,该库优雅、高效值得广大Python的码农加入自己基本开发栈中。
无独有偶,该程序还有一个同名的 Pampy.js 的 JavaScript 版本库。
你如果有兴趣,可以阅读源码,将其照搬到更多的开发语言中。
安装这个库的方式也是老生常谈了:
- pip install pampy
Pampy 的花式秀
匹配单个字符
我们可以用 _ 来匹配单个字符:
from pampy import _,match a=['a',1,'b',2,'c',3,'d',4] patter = ['a',1,'b',_,'c',3,'d',4] action=lambda x: f'b is: {x}' print(match(a,patter,action))
运行结果是:
- b is: 2
从上面例子可以看出,实际上我们只是用 _ 充当一个占位符,当匹配的时候,找到这个占位符对应的元素即可。
匹配字典
我们可以匹配多层级的字典中的任意一个层级的 key 或者 value:
from pampy import _, match person = { 'address': {'province': '湖北', 'city': '武汉', 'district': '东湖高新'}, 'name': '闲欢' } patter = {_: {_: '武汉'}} action = lambda k1, k2: ({'k1': k1, 'k2': k2}) print(match(person, patter, action))
运行结果是:
- {'k1': 'address', 'k2': 'city'}
跟前一个例子类似,这里使用 _ 这个占位符占位,然后在 action 里面定位占位符,即可输出结果。
匹配开头和结尾
上面的例子,我们都是使用占位符来占位,但是占位符只能匹配一个字符,下面的例子,我们将用 HEAD 和 TAIL 这两个关键词来匹配开头和结尾,他们可以批评任意多个字符:
from pampy import _,match,HEAD,TAIL a=['a',1,'b',2,'c',3,'d',4] patter = [HEAD,_,'b',2,'c',3,TAIL] action=lambda h,m,t: ({'head':h,'middle':m,'tail':t}) print(match(a,patter,action))
运行上面例子,结果是:
- {'head': 'a', 'middle': 1, 'tail': ['d', 4]}
我们可以从结果看到,HEAD 匹配了一个字符,TAIL 匹配了两个字符,输出的时候,如果是多个字符,结果会以数组的方式给出。
总结
Pampy 的例子都很简单,大家一阅便知。通过看着几个例子,是不是有种感觉:哇,还有这等神器!
当然,Pampy 的模式匹配不止这么几种方式,还有更多方式有待大家去探索。
以上是这个Python神器,能让你摸半天鱼!的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

在CentOS系统上高效处理PyTorch数据,需要以下步骤:依赖安装:首先更新系统并安装Python3和pip:sudoyumupdate-ysudoyuminstallpython3-ysudoyuminstallpython3-pip-y然后,根据您的CentOS版本和GPU型号,从NVIDIA官网下载并安装CUDAToolkit和cuDNN。虚拟环境配置(推荐):使用conda创建并激活一个新的虚拟环境,例如:condacreate-n

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
