首页 科技周边 人工智能 微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务

微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务

Apr 11, 2023 pm 08:49 PM
机器学习 微软 azure

3 月 9 日消息,微软于去年宣布,和开源自然语言处理(NLP)平台 Hugging Face 展开深度合作。在构建 Hugging Face Endpoints(一种由 Azure ML Managed Endpoint 支持的机器学习推理服务)之后,微软今天宣布 Azure 机器学习可以使用 Hugging Face 的基础模型了。

微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务

微软在 Azure 开源日上表示,以公开预览版本的形式,为 Azure 机器学习带来了基础模型。Azure 平台用户现在能以这些开源基础模型为基础,扩展满足自己的需求。

微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务

微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务

微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务

微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务

IT之家翻译微软博文中的部分内容如下:

组织通过这项新功能,在不需要手动管理和优化依赖项的情况下,可以访问精心策划的环境和 Azure AI 基础设施。

Azure 机器学习专业人员可以微调和部署来自多个开源存储库的基础模型,使用 Azure 机器学习组件和管道,轻松地执行他们的数据科学任务。

以上是微软向 Azure 用户开放 Hugging Face 机器学习基础模型,帮助执行各项数据科学任务的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

微软发布 Win11 八月累积更新:提高安全、优化锁屏等 微软发布 Win11 八月累积更新:提高安全、优化锁屏等 Aug 14, 2024 am 10:39 AM

本站8月14日消息,在今天的8月补丁星期二活动日中,微软发布了适用于Windows11系统的累积更新,包括面向22H2和23H2的KB5041585更新,面向21H2的KB5041592更新。上述设备安装8月累积更新之后,本站附上版本号变化如下:21H2设备安装后版本号升至Build22000.314722H2设备安装后版本号升至Build22621.403723H2设备安装后版本号升至Build22631.4037面向Windows1121H2的KB5041585更新主要内容如下:改进:提高了

微软全屏弹窗催促:Windows 10用户抓紧时间升级到Windows 11 微软全屏弹窗催促:Windows 10用户抓紧时间升级到Windows 11 Jun 06, 2024 am 11:35 AM

6月3日消息,微软正在积极向所有Windows10用户发送全屏通知,鼓励他们升级到Windows11操作系统。这一举措涉及了那些硬件配置并不支持新系统的设备。自2015年起,Windows10已经占据了近70%的市场份额,稳坐Windows操作系统的霸主地位。然而,市场占有率远超过82%的市场份额,占有率远超过2021年面世的Windows11。尽管Windows11已经推出已近三年,但其市场渗透率仍显缓慢。微软已宣布,将于2025年10月14日后终止对Windows10的技术支持,以便更专注于

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

C++技术中的机器学习:使用C++实现常见机器学习算法的指南 C++技术中的机器学习:使用C++实现常见机器学习算法的指南 Jun 03, 2024 pm 07:33 PM

在C++中,机器学习算法的实施方式包括:线性回归:用于预测连续变量,步骤包括加载数据、计算权重和偏差、更新参数和预测。逻辑回归:用于预测离散变量,流程与线性回归类似,但使用sigmoid函数进行预测。支持向量机:一种强大的分类和回归算法,涉及计算支持向量和预测标签。

See all articles