首页 > 科技周边 > 人工智能 > 深度学习必须掌握的13种概率分布

深度学习必须掌握的13种概率分布

WBOY
发布: 2023-04-11 21:58:12
转载
1649 人浏览过

深度学习必须掌握的13种概率分布

一. 概率分布概述

深度学习必须掌握的13种概率分布

  • 共轭意味着它有共轭分布的关系。
  • 在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。共轭先验维基百科在这里(https://en.wikipedia.org/wiki/Conjugate_prior)。
  • 多分类表示随机方差大于 2。
  • n 次意味着我们也考虑了先验概率 p(x)。
  • 为了进一步了解概率,我建议阅读 [pattern recognition and machine learning,Bishop 2006]。

二. 分布概率与特征

1.均匀分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/uniform.py

均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。

深度学习必须掌握的13种概率分布

2.伯努利分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/bernoulli.py

  • 先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。
  • 利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。图片

3.二项分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/binomial.py  

  • 参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。
  • 二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。

深度学习必须掌握的13种概率分布

4.多伯努利分布,分类分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/categorical.py

  • 多伯努利称为分类分布。
  • 交叉熵和采取负对数的多伯努利分布具有相同的形式。

深度学习必须掌握的13种概率分布

5.多项式分布(离散)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/multinomial.py

多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。

深度学习必须掌握的13种概率分布

6.β分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/beta.py

  • β分布与二项分布和伯努利分布共轭。
  • 利用共轭,利用已知的先验分布可以更容易地得到后验分布。
  • 当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。

深度学习必须掌握的13种概率分布

7.Dirichlet 分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/dirichlet.py  

  • dirichlet 分布与多项式分布是共轭的。
  • 如果 k=2,则为β分布。

深度学习必须掌握的13种概率分布

8.伽马分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/gamma.py

  • 如果 gamma(a,1)/gamma(a,1) gamma(b,1)与 beta(a,b)相同,则 gamma 分布为β分布。
  • 指数分布和卡方分布是伽马分布的特例。

深度学习必须掌握的13种概率分布

9.指数分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/exponential.py

指数分布是 α 为 1 时 γ 分布的特例。

深度学习必须掌握的13种概率分布

10.高斯分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/gaussian.py

高斯分布是一种非常常见的连续概率分布。

深度学习必须掌握的13种概率分布

11.正态分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/normal.py

正态分布为标准高斯分布,平均值为 0,标准差为 1。

深度学习必须掌握的13种概率分布

12.卡方分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/chi-squared.py

  • k 自由度的卡方分布是 k 个独立标准正态随机变量的平方和的分布。
  • 卡方分布是 β 分布的特例

深度学习必须掌握的13种概率分布

13.t 分布(连续)

代码:https://github.com/graykode/distribution-is-all-you-need/blob/master/student-t.py

t 分布是对称的钟形分布,与正态分布类似,但尾部较重,这意味着它更容易产生远低于平均值的值。

深度学习必须掌握的13种概率分布

via:https://github.com/graykode/distribution-is-all-you-needa

以上是深度学习必须掌握的13种概率分布的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:51cto.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板