目录
LLaMA 初步评测
加入 RLHF,初创公司 Nebuly AI 开源 ChatLLaMA 训练方法
首页 科技周边 人工智能 Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

Apr 11, 2023 pm 10:25 PM
模型 开源

ChatGPT 的持续爆火,早已让各大科技公司坐不住了。

就在刚刚过去的一周,Meta「开源」了一个新的大模型系列 ——LLaMA​(Large Language Model Meta AI),参数量从 70 亿到 650 亿不等。因为 LLaMA 比之前发布的很多大模型参数更少,但性能更好,所以一经发布让很多研究者兴奋不已。

例如,130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过参数量达 1750 亿的 GPT-3,而且可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。

参数量的减少对于普通研究者和商业机构来说都是好事,但 LLaMA 真的像论文中说得那样表现那么好吗?和当前的 ChatGPT 相比,LLaMA 是否可以勉强一战?为了解答这些疑问,有些研究者已经对这一模型进行了测试。

还有公司已经在尝试补齐 LLaMA 短板,想看能不能通过添加 RLHF 等训练方法让 LLaMA 表现更好。

LLaMA 初步评测

这份评测结果来自一位名叫 @Enryu 的 Medium 作者。它比较了 LLaMA 和 ChatGPT 在解释笑话、零样本分类和代码生成三个颇具挑战性的任务中的效果。相关博客文章为《Mini-post: first look at LLaMA》。

作者在 RTX 3090/RTX 4090 上运行 LLaMA 7B/13B 版本,在单个 A100 上运行 33B 版本。

需要注意的是,与 ChatGPT 不同,其他模型并不是基于指令微调,因此 prompt 的结构有所不同。

解释笑话

这是谷歌原始 PaLM 论文中展示的一个用例:给出一个笑话,让模型来解释它为什么好笑。该任务需要将世界知识和一些基本逻辑相结合。PaLM 之前的所有模型都无法做到这一点。作者从 PaLM 论文中提取了一些示例,比较了 LLaMA-7B、LLaMA-13B、LLaMA-33B 与 ChatGPT 的表现。

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星


可以看到,结果很糟糕。这些模型 get 到了一些笑点,但无法真正理解,它们只是随机生成一些相关的文本流。ChatGPT 虽与 LLaMA-33B 一样表现很差(其他几个模型更差),但它遵循了不一样的策略:生成了一大堆文本,希望自己的回答至少有一部分是正确的(但大部分显然不是),是不是很像大家考试时应对问答题的策略?

不过,ChatGPT 起码 get 到了关于 Schmidthuber 的笑话。但总的来说,这些模型在零样本笑话解释任务上的效果与 PaLM 相差甚远(除非 PaLM 的示例是精心挑选)。

零样本分类

作者考虑的第二项任务更具挑战性 —— 标题党(clickbait)分类。由于连人类也无法就什么是标题党达成一致,作者在 prompt 中为这些模型提供了一些示例(因此实际上是小样本而非零样本)。如下为 LLaMa 的 prompt:

I will tell whether the following news titles are clickbait:
1) The WORST care homes in England: Interactive map reveals the lowest-rated 2,530 residences - so is there one near you?
Clickbait: yes
2) Netflix's top 10 most-watched movies of all time
Clickbait: yes
3) Peering Through the Fog of Inflation
Clickbait: no
4) You’ll never believe which TV cook this cheeky chap grew up to be
Clickbait: yes
登录后复制

下图为 LLaMA-7B、LLaMA-13B、LLaMA-33B 与 ChatGPT 的更多示例结果。

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

很明显,赢家为 LLaMA-33B,它是唯一一个能够遵循所有请求格式(yes/no)的模型,并且预测合理。ChatGPT 也还可以,但有些预测不太合理,格式也有错误。较小的模型(7B/13B)不适用于该任务。

代码生成

虽然 LLM 擅长人文学科,但在 STEM 学科上表现糟糕。LLaMA 虽然有基准测试结果,但作者在代码生成领域尝试了一些特别的东西,即将人类语言零样本地转换为 SQL 查询。这并不是很实用,在现实生活中直接编写查询会更有效率。这里只作为代码生成任务的一个示例。

在 prompt 中,作者提供表模式(table schema)以及想要实现的目标,要求模型给出 SQL 查询。如下为一些随机示例,老实说,ChatGPT 看起来效果更好。

-- We have a table `events` with columns `event_id`, `timestamp`, `user_id`, `rpc_method`.
-- We want to count how many users issued request "Login" over the last week.
-- SQL query for this is:

-- 7b
SELECT count (*)
FROM events
WHERE user_id IN (SELECT user_id
 FROM events
 WHERE timestamp >= NOW () - INTERVAL 7 DAY)
 AND rpc_method = 'Login';

-- 13b
SELECT COUNT (*) FROM events WHERE rpc_method = "Login"
 AND UNIX_TIMESTAMP (timestamp) >= UNIX_TIMESTAMP (CURRENT_DATE - INTERVAL 7 DAY)

-- 33b
SELECT user_id,
 COUNT (DISTINCT user_id) AS total
FROM events
WHERE timestamp BETWEEN TIMESTAMP '2013-08-14 00:00:00' AND TIMESTAMP '2013-08-21 00:00:00'
 AND rpc_method = 'Login'
GROUP BY user_id

-- ChatGPT
SELECT COUNT (DISTINCT user_id)
FROM events
WHERE rpc_method = 'Login'
AND timestamp >= DATE_SUB (NOW (), INTERVAL 1 WEEK);
登录后复制

从测试结果来看,LLaMA 在一些任务上表现还不错,但在另一些任务上和 ChatGPT 还有一些差距。如果能像 ChatGPT 一样加入一些「训练秘籍」,效果会不会大幅提升?

加入 RLHF,初创公司 Nebuly AI 开源 ChatLLaMA 训练方法

虽然 LLaMA 发布之初就得到众多研究者的青睐,但是少了 RLHF 的加持,从上述评测结果来看,还是差点意思。

在 LLaMA 发布三天后,初创公司 Nebuly AI 开源了 RLHF 版 LLaMA(ChatLLaMA)的训练方法。它的训练过程类似 ChatGPT,该项目允许基于预训练的 LLaMA 模型构建 ChatGPT 形式的服务。项目上线刚刚 2 天,狂揽 5.2K 星。

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

项目地址:https://github.com/nebuly-ai/nebullvm/tree/main/apps/accelerate/chatllama

ChatLLaMA 训练过程算法实现主打比 ChatGPT 训练更快、更便宜,我们可以从以下四点得到验证:

  • ChatLLaMA 是一个完整的开源实现,允许用户基于预训练的 LLaMA 模型构建 ChatGPT 风格的服务;
  • 与 ChatGPT 相比,LLaMA 架构更小,但训练过程和单 GPU 推理速度更快,成本更低;
  • ChatLLaMA 内置了对 DeepSpeed ZERO 的支持,以加速微调过程;
  • 该库还支持所有的 LLaMA 模型架构(7B、13B、33B、65B),因此用户可以根据训练时间和推理性能偏好对模型进行微调。

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

图源:https://openai.com/blog/chatgpt

更是有研究者表示,ChatLLaMA 比 ChatGPT 训练速度最高快 15 倍。

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

不过有人对这一说法提出质疑,认为该项目没有给出准确的衡量标准。

Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星

项目刚刚上线 2 天,还处于早期阶段,用户可以通过以下添加项进一步扩展:

  • 带有微调权重的 Checkpoint;
  • 用于快速推理的优化技术;
  • 支持将模型打包到有效的部署框架中。

Nebuly AI 希望更多人加入进来,创造更高效和开放的 ChatGPT 类助手。

该如何使用呢?首先是使用 pip 安装软件包:

pip install chatllama-py
登录后复制

然后是克隆 LLaMA 模型:

git clone https://github.com/facebookresearch/llama.gitcd llama
pip install -r requirements.txt
pip install -e .
登录后复制

一切准备就绪后,就可以运行了,项目中介绍了 ChatLLaMA 7B 的训练示例,感兴趣的小伙伴可以查看原项目。

以上是Meta开源的ChatGPT平替到底好不好用?测试结果、加料改装方法已出炉,2天5.2k星的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

推荐:优秀JS开源人脸检测识别项目 推荐:优秀JS开源人脸检测识别项目 Apr 03, 2024 am 11:55 AM

人脸检测识别技术已经是一个比较成熟且应用广泛的技术。而目前最为广泛的互联网应用语言非JS莫属,在Web前端实现人脸检测识别相比后端的人脸识别有优势也有弱势。优势包括减少网络交互、实时识别,大大缩短了用户等待时间,提高了用户体验;弱势是:受到模型大小限制,其中准确率也有限。如何在web端使用js实现人脸检测呢?为了实现Web端人脸识别,需要熟悉相关的编程语言和技术,如JavaScript、HTML、CSS、WebRTC等。同时还需要掌握相关的计算机视觉和人工智能技术。值得注意的是,由于Web端的计

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

阿里7B多模态文档理解大模型拿下新SOTA 阿里7B多模态文档理解大模型拿下新SOTA Apr 02, 2024 am 11:31 AM

多模态文档理解能力新SOTA!阿里mPLUG团队发布最新开源工作mPLUG-DocOwl1.5,针对高分辨率图片文字识别、通用文档结构理解、指令遵循、外部知识引入四大挑战,提出了一系列解决方案。话不多说,先来看效果。复杂结构的图表一键识别转换为Markdown格式:不同样式的图表都可以:更细节的文字识别和定位也能轻松搞定:还能对文档理解给出详细解释:要知道,“文档理解”目前是大语言模型实现落地的一个重要场景,市面上有很多辅助文档阅读的产品,有的主要通过OCR系统进行文字识别,配合LLM进行文字理

See all articles