目录
一、图神经网络的介绍" >一、图神经网络的介绍
1、为什么要研究图?" >1、为什么要研究图?
2、图结构数据无处不在" >2、图结构数据无处不在
3、图机器学习的近期趋势" >3、图机器学习的近期趋势
4、图神经网络的简单历史" >4、图神经网络的简单历史
二、图神经网络的基础" >二、图神经网络的基础
1、机器学习的生命周期" >1、机器学习的生命周期
2、图中的特征学习" >2、图中的特征学习
3、图神经网络的基础" >3、图神经网络的基础
4、图神经网络的基本模型" >4、图神经网络的基本模型
5、图神经网络的流行模型" >5、图神经网络的流行模型
三、图神经网络的前沿" >三、图神经网络的前沿
1、Graph Structure Learning" >1、Graph Structure Learning
2、Other Frontiers" >2、Other Frontiers
四、图神经网络的应用" >四、图神经网络的应用
1、图神经网络在推荐系统中的应用" >1、图神经网络在推荐系统中的应用
2、图神经网络在计算机视觉中的应用" >2、图神经网络在计算机视觉中的应用
3、图神经网络在自然语言处理中的应用" >3、图神经网络在自然语言处理中的应用
4、图神经网络在程序分析中的应用" >4、图神经网络在程序分析中的应用
5、图神经网络在智慧城市中的应用" >5、图神经网络在智慧城市中的应用
五、问答环节" >五、问答环节
Q1:GNN 是下一代深度学习的重要方法吗?" >Q1:GNN 是下一代深度学习的重要方法吗?
Q2:GNN 和因果学习是否可以结合?如何结合?" >Q2:GNN 和因果学习是否可以结合?如何结合?
Q3:GNN 的可解释性和传统机器学习的可解释性的区别和联系是什么?" >Q3:GNN 的可解释性和传统机器学习的可解释性的区别和联系是什么?
Q4:如何直接基于图数据库、利用图计算的能力进行 GNN 的训练和推理?" >Q4:如何直接基于图数据库、利用图计算的能力进行 GNN 的训练和推理?
首页 科技周边 人工智能 GNN的基础、前沿和应用

GNN的基础、前沿和应用

Apr 11, 2023 pm 11:40 PM
机器学习 神经网络

GNN的基础、前沿和应用

近年来,图神经网络(GNN)取得了快速、令人难以置信的进展。图神经网络又称为图深度学习、图表征学习(图表示学习)或几何深度学习,是机器学习特别是深度学习领域增长最快的研究课题。本次分享的题目为《GNN的基础、前沿和应用》,主要介绍由吴凌飞、崔鹏、裴健、赵亮几位学者牵头编撰的综合性书籍《图神经网络基础、前沿与应用》中的大致内容。

一、图神经网络的介绍

1、为什么要研究图?

图片

图是一种描述和建模复杂系统的通用语言。图本身并不复杂,它主要由边和结点构成。我们可以用结点表示任何我们想要建模的物体,可以用边表示两个结点之间的关系或者相似度。我们常说的图神经网络或者图机器学习,通常是将图的结构以及边和结点的信息作为算法的输入,输出想要的结果。比如在搜索引擎中,当我们输入一个 query 时,引擎会根据 query 的信息、用户的信息以及一些上下文信息返回个性化的搜索结果,这些信息可以天然地以图的方式进行组织。

图片

2、图结构数据无处不在

图片

图结构数据到处可见,比如 Internet、社交网络等。除此之外,在如今非常火的蛋白质发现领域,人们会用图来描述和建模已有的蛋白质并生成新的图,从而帮助人们去发现新的药物。我们也可以用图去做一些复杂的程序分析,还可以在计算机视觉中去做一些 high-level 的推理。

3、图机器学习的近期趋势

图片

图机器学习并不是一个非常新的话题,近 20 年来一直都有这个研究方向,以前一直比较小众。2016 年开始,随着现代图神经网络相关论文的出现,图机器学习成为了一个热门的研究方向。人们发现这种新一代的图机器学习方式可以更好地学习数据本身和数据之间的信息,从而能够更好地得到数据表征,最终能够更好地完成更重要的任务。

4、图神经网络的简单历史

图片

最早的图神经网络相关论文出现在 2009 年,在深度学习流行之前。现代图神经网络相关论文出现在 2016 年,是对早期的图神经网络的改进。之后,GCN 的出现推动了图神经网络的快速发展,2017 年至今,有大量新的算法涌现出来。随着图神经网络的算法越来越成熟,2019 年至今,工业界尝试用这些算法解决一些实际问题,同时也有很多开源的工具被开发出来去提升解决问题的效率。2021 年至今,很多图神经网络相关的书籍被撰写出来,当然也包括这本《图神经网络基础、前沿与应用》。

图片

《图神经网络基础、前沿与应用》一书系统地介绍了图神经网络领域中最核心的概念和技术,以及前沿的研究和开发,并介绍了在不同领域的应用。无论是学术界还是工业界的读者,都能够从中受益。

二、图神经网络的基础

1、机器学习的生命周期

图片

上图体现了机器学习的生命周期,其中特征学习是非常重要的环节,它的主要任务是将原始数据转化为结构化的数据。在深度学习出现之前,大家主要是通过特征工程来完成这个任务。深度学习出现以后,这种端到端的机器学习方式开始成为主流

2、图中的特征学习

图片

Feature Learning in Graphs 和深度学习的做法非常类似,目标是设计有效的和任务相关或者和任务无关的特征学习方法将原始图中的结点映射到高维空间中,从而得到结点的 embedding 表示,进而完成下游任务。

3、图神经网络的基础

图片

图神经网络中有两类需要学习的表征:

  • 图结点的表征

需要一个 filter operation,将图的矩阵和结点的向量表示作为输入,不断学习,更新结点的向量表示。目前比较普遍的 filter operation 有 Spectral-based、Spatial-based、Attention-based、Recurrent-based。

  • 图的表征

需要一个 pool operation,将图的矩阵和结点的向量表示作为输入,不断学习,得到包含更少的结点的图的矩阵及其结点的向量表示,最终得到 graph-level 的向量表示来表征整张图。目前比较常见的 pool operation 有 Flat Graph Pooling(比如 Max、Ave、Min),Hierarchical Graph Pooling(比如 Diffpool)。

4、图神经网络的基本模型

图片

在机器学习领域有一个 context learning 的概念。在图神经网络中,一个结点的 context 就是它的邻居结点,我们可以用一个结点的的邻居结点来学习这个结点的向量表示。

图片

通过这种方式,每个结点都可以定义一个计算图。

图片

我们可以将计算图分层,第一层的就是最原始的信息,通过逐层传递和聚合信息来学到所有结点的向量表示。

图片

图片


图片

上图大致描述了图神经网络模型学习的主要步骤,主要有以下四个步骤:

  • 定义一个聚合函数;
  • 根据任务定义损失函数;
  • 训练一批结点,比如可以一次训练一批计算图;
  • 为每个结点产出需要的向量表示,甚至是一些从来没有训练过的结点(学习的是聚合函数,可以用聚合函数和已经训练过的向量表示得到新结点的向量表示)。

图片

上图是一个以平均作为聚合函数的例子,第 k 层结点 v 的向量表示依赖于上一层其邻居结点的向量表示的平均和上一层其自己的向量表示。

图片

对以上的内容进行总结,图神经网络的要点就是通过聚合邻居结点的信息生成目标结点的向量表示,它考虑到了编码器中的参数共享,也考虑到了推理学习。

5、图神经网络的流行模型

图片

图神经网络经典或者流行的算法本质上是使用不同的 aggregation function 或者 filter function,可以分为有监督的图神经网络和无监督的图神经网络。

图片

GCN 是最经典的算法之一,它能够直接作用于图并且利用其结构信息。围绕提升模型速度、实用性以及稳定性,如上图所示,GCN 也经历了几次迭代。GCN 的论文是具有划时代意义的,为图神经网络奠定了基础。

图片

MPNN 的核心要点是将图卷积转化为信息传递的过程,它定义两个 function,分别是 aggregation function 和 update function。这个算法是一个简单通用的算法,但是它并不高效。

GraphSage 是工业级别的算法,它使用采样的方式来得到一定数量的邻居结点从而学校结点的向量表示。

图片

GAT 则是引入 attention 的思想,它的核心要点是动态地学习执行信息传递过程中边的权重。

图片

除了以上介绍的算法以外,还有 GGNN,它的特点是输出可以是多个结点,大家感兴趣可以去看相关的论文。

在《图神经网络基础、前沿与应用》这本书中的第五、六、七、八章还分别介绍了如何评估图神经网络、图神经网络的扩展性、图神经网络的解释性、图神经网络的对抗稳定性,大家感兴趣可以去阅读书中对应的章节。

三、图神经网络的前沿

1、Graph Structure Learning

图片

图神经网络是需要图结构数据的,但是给定的图结构是否是最优的是存疑的,有的时候可能会有很多的噪声,很多应用可能没有图结构的数据,甚至仅仅只有原始的特征。

图片

所以,我们需要利用图神经网络学习到最优的图表示以及图结点表征。

图片

我们将图的学习转化为结点间相似的学习,并通过正则化的方式控制平滑度、系属性和连接性,通过迭代的方式去提炼图的结构和图的向量表示。

图片

图片

图片

实验数据可以表现出这种方式的优势。

图片

通过图可视化的结果可以发现,学出的图倾向于将同类的对象聚在一起,有一定的可解释性。

2、Other Frontiers

在《图神经网络基础、前沿与应用》这本书中,还分别介绍了如下前沿研究,这些前沿研究在很多场景下都有很重要的应用:

  • 图分类;
  • Link Prediction;
  • 图生成;
  • 图转换;
  • 图匹配;
  • 动态图神经网络;
  • 异质图神经网络;
  • 图神经网络的 AutoML;
  • 图神经网络的自监督学习。

四、图神经网络的应用

1、图神经网络在推荐系统中的应用

图片

我们可以利用会话信息构造异质全局图,然后通过图神经网络学习得到用户或者物品的向量表示,利用这种向量表示去做个性化的推荐。

2、图神经网络在计算机视觉中的应用

图片

我们可以跟踪物体动态的变化过程,通过图神经网络加深对视频的理解。

3、图神经网络在自然语言处理中的应用

图片

我们可以利用图神经网络来理解自然语言的 high-level 的信息。

4、图神经网络在程序分析中的应用

图片

5、图神经网络在智慧城市中的应用

图片

五、问答环节

Q1:GNN 是下一代深度学习的重要方法吗?

A1:图神经网络是非常重要的分支,和图神经网络并驾齐驱的是 Transformer。鉴于图神经网络的灵活性,图神经网络和 Transformer 相互结合,去发挥更大的优势。

Q2:GNN 和因果学习是否可以结合?如何结合?

A2:因果学习重要的环节是因果图,因果图和 GNN 可以天然地结合。因果学习的难点是它的数据量级很小,我们可以利用 GNN 的能力更好地去学习因果图。

Q3:GNN 的可解释性和传统机器学习的可解释性的区别和联系是什么?

A3:在《图神经网络基础、前沿与应用》这本书中会有详细的介绍。

Q4:如何直接基于图数据库、利用图计算的能力进行 GNN 的训练和推理?

A4:目前在统一图计算平台上还没有很好的实践,有一些创业公司和科研团队在做相关方向的探索,这会是一个非常有价值且有挑战的研究方向,比较可行的做法是分领域。

以上是GNN的基础、前沿和应用的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

通过学习曲线识别过拟合和欠拟合 通过学习曲线识别过拟合和欠拟合 Apr 29, 2024 pm 06:50 PM

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通透!机器学习各大模型原理的深度剖析! 通透!机器学习各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

人工智能在太空探索和人居工程中的演变 人工智能在太空探索和人居工程中的演变 Apr 29, 2024 pm 03:25 PM

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

See all articles