逆天了!用Numpy开发深度学习框架,透视神经网络训练过程
哈喽,大家好。
今天给大家分享一个非常牛逼的开源项目,用Numpy开发了一个深度学习框架,语法与 Pytorch 基本一致。
今天以一个简单的卷积神经网络为例,分析神经网络训练过程中,涉及的前向传播、反向传播、参数优化等核心步骤的源码。
使用的数据集和代码已经打包好,文末有获取方式。
1. 准备工作
先准备好数据和代码。
1.1 搭建网络
首先,下载框架源码,地址:https://github.com/duma-repo/PyDyNet
git clone https://github.com/duma-repo/PyDyNet.git
搭建LeNet卷积神经网络,训练三分类模型。
在PyDyNet目录直接创建代码文件即可。
from pydynet import nn class LeNet(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5, padding=2) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) self.sigmoid = nn.Sigmoid() self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 3) def forward(self, x): x = self.conv1(x) x = self.sigmoid(x) x = self.avg_pool(x) x = self.conv2(x) x = self.sigmoid(x) x = self.avg_pool(x) x = x.reshape(x.shape[0], -1) x = self.fc1(x) x = self.sigmoid(x) x = self.fc2(x) x = self.sigmoid(x) x = self.fc3(x) return x
可以看到,网络的定义与Pytorch语法完全一样。
我提供的源代码里,提供了 summary 函数可以打印网络结构。
1.2 准备数据
训练数据使用Fanshion-MNIST数据集,它包含10个类别的图片,每个类别 6k 张。
为了加快训练,我只抽取了前3个类别,共1.8w张训练图片,做一个三分类模型。
1.3 模型训练
import pydynet from pydynet import nn from pydynet import optim lr, num_epochs = 0.9, 10 optimizer = optim.SGD(net.parameters(), lr=lr) loss = nn.CrossEntropyLoss() for epoch in range(num_epochs): net.train() for i, (X, y) in enumerate(train_iter): optimizer.zero_grad() y_hat = net(X) l = loss(y_hat, y) l.backward() optimizer.step() with pydynet.no_grad(): metric.add(l.numpy() * X.shape[0], accuracy(y_hat, y), X.shape[0])
训练代码也跟Pytorch一样。
下面重点要做的就是深入模型训练的源码,来学习模型训练的原理。
2. train、no_grad和eval
模型开始训练前,会调用net.train。
def train(self, mode: bool = True): set_grad_enabled(mode) self.set_module_state(mode)
可以看到,它会将grad(梯度)设置成True,之后创建的Tensor是可以带梯度的。Tensor带上梯度后,便会将其放入计算图中,等待求导计算梯度。
而下面的with no_grad(): 代码
class no_grad: def __enter__(self) -> None: self.prev = is_grad_enable() set_grad_enabled(False)
会将grad(梯度)设置成False,这样之后创建的Tensor不会放到计算图中,自然也不需要计算梯度,可以加快推理。
我们经常在Pytorch中看到net.eval()的用法,我们也顺便看一下它的源码。
def eval(self): return self.train(False)
可以看到,它直接调用train(False)来关闭梯度,效果与no_grad()类似。
所以,一般在训练前调用train打开梯度。训练后,调用eval关闭梯度,方便快速推理。
3. 前向传播
前向传播除了计算类别概率外,最最重要的一件事是按照前传顺序,将网络中的 tensor 组织成计算图,目的是为了反向传播时计算每个tensor的梯度。
tensor在神经网络中,不止用来存储数据,还用计算梯度、存储梯度。
以第一层卷积操作为例,来查看如何生成计算图。
def conv2d(x: tensor.Tensor, kernel: tensor.Tensor, padding: int = 0, stride: int = 1): '''二维卷积函数 ''' N, _, _, _ = x.shape out_channels, _, kernel_size, _ = kernel.shape pad_x = __pad2d(x, padding) col = __im2col2d(pad_x, kernel_size, stride) out_h, out_w = col.shape[-2:] col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1) col_filter = kernel.reshape(out_channels, -1).T out = col @ col_filter return out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)
x是输入的图片,不需要记录梯度。kernel是卷积核的权重,需要计算梯度。
所以,pad_x = __pad2d(x, padding) 生成的新的tensor也是不带梯度的,因此也不需要加入计算图中。
而kernel.reshape(out_channels, -1)产生的tensor则是需要计算梯度,也需要加入计算图中。
下面看看加入的过程:
def reshape(self, *new_shape): return reshape(self, new_shape) class reshape(UnaryOperator): ''' 张量形状变换算子,在Tensor中进行重载 Parameters ---------- new_shape : tuple 变换后的形状,用法同NumPy ''' def __init__(self, x: Tensor, new_shape: tuple) -> None: self.new_shape = new_shape super().__init__(x) def forward(self, x: Tensor) return x.data.reshape(self.new_shape) def grad_fn(self, x: Tensor, grad: np.ndarray) return grad.reshape(x.shape)
reshape函数会返回一个reshape类对象,reshape类继承了UnaryOperator类,并在__init__函数中,调用了父类初始化函数。
class UnaryOperator(Tensor): def __init__(self, x: Tensor) -> None: if not isinstance(x, Tensor): x = Tensor(x) self.device = x.device super().__init__( data=self.forward(x), device=x.device, # 这里 requires_grad 为 True requires_grad=is_grad_enable() and x.requires_grad, )
UnaryOperator类继承了Tensor类,所以reshape对象也是一个tensor。
在UnaryOperator的__init__函数中,调用Tensor的初始化函数,并且传入的requires_grad参数是True,代表需要计算梯度。
requires_grad的计算代码为is_grad_enable() and x.requires_grad,is_grad_enable()已经被train设置为True,而x是卷积核,它的requires_grad也是True。
class Tensor: def __init__( self, data: Any, dtype=None, device: Union[Device, int, str, None] = None, requires_grad: bool = False, ) -> None: if self.requires_grad: # 不需要求梯度的节点不出现在动态计算图中 Graph.add_node(self)
最终在Tensor类的初始化方法中,调用Graph.add_node(self)将当前tensor加入到计算图中。
同理,下面使用requires_grad=True的tensor常见出来的新tensor都会放到计算图中。
经过一次卷积操作,计算图中会增加 6 个节点。
4. 反向传播
一次前向传播完成后,从计算图中最后一个节点开始,从后往前进行反向传播。
l = loss(y_hat, y) l.backward()
经过前向网络一层层传播,最终传到了损失张量l。
以l为起点,从前向后传播,就可计算计算图中每个节点的梯度。
backward的核心代码如下:
def backward(self, retain_graph: bool = False): for node in Graph.node_list[y_id::-1]: grad = node.grad for last in [l for l in node.last if l.requires_grad]: add_grad = node.grad_fn(last, grad) last.grad += add_grad
Graph.node_list[y_id::-1]将计算图倒序排。
node是前向传播时放入计算图中的每个tensor。
node.last 是生成当前tensor的直接父节点。
调用node.grad_fn计算梯度,并反向传给它的父节点。
grad_fn其实就是Tensor的求导公式,如:
class pow(BinaryOperator): ''' 幂运算算子,在Tensor类中进行重载 See also -------- add : 加法算子 ''' def grad_fn(self, node: Tensor, grad: np.ndarray) if node is self.last[0]: return (self.data * self.last[1].data / node.data) * grad
return后的代码其实就是幂函数求导公式。
假设y=x^2,x的导数为2x。
5. 更新参数
反向传播计算梯度后,便可以调用优化器,更新模型参数。
l.backward() optimizer.step()
本次训练我们用梯度下降SGD算法优化参数,更新过程如下:
def step(self): for i in range(len(self.params)): grad = self.params[i].grad + self.weight_decay * self.params[i].data self.v[i] *= self.momentum self.v[i] += self.lr * grad self.params[i].data -= self.v[i] if self.nesterov: self.params[i].data -= self.lr * grad
self.params是整个网络的权重,初始化SGD时传进去的。
step函数最核心的两行代码,self.v[i] += self.lr * grad 和 self.params[i].data -= self.v[i],用当前参数 - 学习速率 * 梯度更新当前参数。
这是机器学习的基础内容了,我们应该很熟悉了。
一次模型训练的完整过程大致就串完了,大家可以设置打印语句,或者通过DEBUG的方式跟踪每一行代码的执行过程,这样可以更了解模型的训练过程。
以上是逆天了!用Numpy开发深度学习框架,透视神经网络训练过程的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

写在前面今天我们探讨下深度学习技术如何改善在复杂环境中基于视觉的SLAM(同时定位与地图构建)性能。通过将深度特征提取和深度匹配方法相结合,这里介绍了一种多功能的混合视觉SLAM系统,旨在提高在诸如低光条件、动态光照、弱纹理区域和严重抖动等挑战性场景中的适应性。我们的系统支持多种模式,包括拓展单目、立体、单目-惯性以及立体-惯性配置。除此之外,还分析了如何将视觉SLAM与深度学习方法相结合,以启发其他研究。通过在公共数据集和自采样数据上的广泛实验,展示了SL-SLAM在定位精度和跟踪鲁棒性方面优

这个AI辅助编程工具在这个AI迅速发展的阶段,挖掘出了一大批好用的AI辅助编程工具。AI辅助编程工具能够提高开发效率、改善代码质量、降低bug率,是现代软件开发过程中的重要助手。今天大姚给大家分享4款AI辅助编程工具(并且都支持C#语言),希望对大家有所帮助。https://github.com/YSGStudyHards/DotNetGuide1.GitHubCopilotGitHubCopilot是一款AI编码助手,可帮助你更快、更省力地编写代码,从而将更多精力集中在问题解决和协作上。Git

如何升级numpy版本:简单易懂的教程,需要具体代码示例引言:NumPy是一个重要的Python库,用于科学计算。它提供了一个强大的多维数组对象和一系列与之相关的函数,可用于进行高效的数值运算。随着新版本的发布,不断有更新的特性和Bug修复可供我们使用。本文将介绍如何升级已安装的NumPy库,以获取最新特性并解决已知问题。步骤1:检查当前NumPy版本在开始

在当今科技日新月异的浪潮中,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)与深度学习(DeepLearning,DL)如同璀璨星辰,引领着信息技术的新浪潮。这三个词汇频繁出现在各种前沿讨论和实际应用中,但对于许多初涉此领域的探索者来说,它们的具体含义及相互之间的内在联系可能仍笼罩着一层神秘面纱。那让我们先来看看这张图。可以看出,深度学习、机器学习和人工智能之间存在着紧密的关联和递进关系。深度学习是机器学习的一个特定领域,而机器学习

自2006年深度学习概念被提出以来,20年快过去了,深度学习作为人工智能领域的一场革命,已经催生了许多具有影响力的算法。那么,你所认为深度学习的top10算法有哪些呢?以下是我心目中深度学习的顶尖算法,它们在创新性、应用价值和影响力方面都占据重要地位。1、深度神经网络(DNN)背景:深度神经网络(DNN)也叫多层感知机,是最普遍的深度学习算法,发明之初由于算力瓶颈而饱受质疑,直到近些年算力、数据的爆发才迎来突破。DNN是一种神经网络模型,它包含多个隐藏层。在该模型中,每一层将输入传递给下一层,并

Go语言开发移动应用程序教程随着移动应用市场的不断蓬勃发展,越来越多的开发者开始探索如何利用Go语言开发移动应用程序。作为一种简洁高效的编程语言,Go语言在移动应用开发中也展现出了强大的潜力。本文将详细介绍如何利用Go语言开发移动应用程序,并附上具体的代码示例,帮助读者快速入门并开始开发自己的移动应用。一、准备工作在开始之前,我们需要准备好开发环境和工具。首

2022年3月3日,距世界首个AI程序员Devin诞生不足一个月,普林斯顿大学的NLP团队开发了一个开源AI程序员SWE-agent。它利用GPT-4模型在GitHub存储库中自动解决问题。SWE-agent在SWE-bench测试集上的表现与Devin相似,平均耗时93秒,解决了12.29%的问题。SWE-agent通过与专用终端交互,可以打开、搜索文件内容,使用自动语法检查、编辑特定行,以及编写和执行测试。(注:以上内容为原内容微调,但保留了原文中的关键信息,未超过指定字数限制。)SWE-A

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」 。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。 AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显着提高。这表明,在单个统一的深度学习框架内,可以实现
