目录
人工智能发展的利弊" >人工智能发展的利弊
1.持续廉价的计算能力" >1.持续廉价的计算能力
优点:事半功倍" >优点:事半功倍
缺点:太多的选择会导致浪费时间和金钱" >缺点:太多的选择会导致浪费时间和金钱
2.新的数据架构" >2.新的数据架构
优点:IT领导者将有机会重新思考数据模型和数据治理" >优点:IT领导者将有机会重新思考数据模型和数据治理
缺点:不了解业务需求" >缺点:不了解业务需求
3.新的数据源" >3.新的数据源
优点:数据很强大" >优点:数据很强大
缺点:怎么知道要使用哪些数据?" >缺点:怎么知道要使用哪些数据?
首页 科技周边 人工智能 人工智能:新冠疫情加速其采用的三种方式

人工智能:新冠疫情加速其采用的三种方式

Apr 12, 2023 am 08:52 AM
人工智能 数据架构 疫情

在过去的几年里,企业需要快速创建新的商业模式和营销渠道,这加速了人工智能的采用。在医疗保健领域尤其如此,数据分析加速了新冠疫苗的开发。在消费包装商品方面,哈佛商业评论报道称,Frito-Lay公司在短短30天内创建了一个电子商务平台Snacks.com。

人工智能:新冠疫情加速其采用的三种方式

新冠疫情还加速了人工智能在教育中的采用,因为学校被迫在一夜之间启用在线学习。只要有可能,世界就会转向“非接触式”交易,彻底改变银行业。

新冠疫情期间的三项技术发展加速了人工智能的采用:

  • 持续廉价的计算能力和存储
  • 新的数据架构
  • 新数据源的可用性

人工智能发展的利弊

以下了解这些发展对IT领导者的利弊。

1.持续廉价的计算能力

即使在摩尔定律之后的60年,计算能力也在不断提高,通过NVidia等公司的新芯片,有了更强大的机器和更多的处理能力。AIImpacts报告称,“在过去的25年中,每美元可用的计算能力可能大约每四年增加十倍(以FLOPS或MIPS衡量)。”然而,在过去的6-8年中,这一速度有所放缓。

优点:事半功倍

廉价计算为IT领导者提供了更多选择,使他们能够事半功倍。

缺点:太多的选择会导致浪费时间和金钱

考虑大数据。借助廉价的计算,IT专业人员希望发挥其强大功能。人们希望开始摄取和分析所有可用数据,从而获得更好的洞察力、分析和决策。

但是如果不小心,最终可能会得到巨大的计算能力,而没有足够的实际业务应用程序。

随着网络、存储和计算成本的下降,人类倾向于更多地使用它们。但它们不一定能为所有事物带来商业价值。

2.新的数据架构

在新冠疫情之前,“数据仓库”和“数据湖”这两个术语是标准的此。但是像“数据结构”和“数据网格”这样的新数据架构几乎不存在。DataFabric支持人工智能采用,因为它使企业能够通过自动化数据发现、治理和消费来使用数据来最大化其价值链。无论数据位于何处,企业都可以在正确的时间提供正确的数据。

优点:IT领导者将有机会重新思考数据模型和数据治理

它提供了一个逆向集中式数据存储库或数据湖的趋势的机会。这可能意味着在最相关的地方有更多的边缘计算和数据可用。这些进步导致适当的数据可以自动用于决策——这对人工智能的可操作性至关重要。

缺点:不了解业务需求

IT领导者需要了解新数据架构的业务和人工智能方面。如果他们不知道业务的每个部分需要什么——包括数据的类型以及数据的使用地点和方式——他们可能无法创建正确类型的数据架构和数据消费以获得适当的支持。IT对业务需求以及与该数据架构配套的业务模型的理解至关重要。

3.新的数据源

Statista研究强调了数据的增长:2020年,全球创建、捕获、复制和使用的数据总量为64.2泽字节,预计到2025年将达到180泽字节以上。2022年5月的Statista研究报告称,“增长是由于新冠疫情导致需求增加,因此高于之前的预期。”大数据源包括媒体、云计算、物联网、网络和数据库。

优点:数据很强大

每个决策和事务都可以追溯到数据源。如果IT领导者可以使用AIOps/MLOps将数据源归零以进行分析和决策,那么他们就获得了授权。适当的数据可以提供即时的业务分析,并为预测分析提供深刻的见解。

缺点:怎么知道要使用哪些数据?

被来自物联网、边缘计算、格式化和非格式化、智能和难以理解的数据所包围——IT领导者正在处理80/20规则:提供80%业务价值的20%可信数据源是什么?您如何使用AI/ML操作来确定可信的数据源,以及应该使用哪些数据源进行分析和决策?每个企业都需要找到这些问题的答案。

核心人工智能技术正在自行进化

人工智能正变得无处不在,由新算法和越来越丰富且廉价的计算能力提供支持。70多年来,人工智能技术一直走在进化的道路上。新冠疫情并没有加速人工智能的发展;它加速了它的采用。

以上是人工智能:新冠疫情加速其采用的三种方式的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles