目录
一、开篇
二、AI和机器学习是什么?
三、AI和机器学习对SaaS金融科技的影响
1.金融风险管理
2.收入预测
3.欺诈检测
4.客户支持
5.资产管理
四、AI和ML在SaaS金融技术中的主要好处
1.提高准确度
2.提高效率
3.增强决策能力
4.负担能力
5.SaaS金融科技中人工智能和机器学习的挑战和风险
1.投入
2.数据隐私
3.算法和数据的偏见
六、结论
首页 科技周边 人工智能 人工智能和机器学习是如何重塑SaaS金融科技的?

人工智能和机器学习是如何重塑SaaS金融科技的?

Apr 12, 2023 am 09:10 AM
人工智能 机器学习 saas

译者 | 崔皓

审校 | 孙淑娟

一、开篇

和每个领先行业一样,由于市场需求的变化和技术的进步,金融技术(FinTech)市场经历了长期的演变。因为许多依赖金融技术的公司转换了运营模式,参加这场技术变革的盛宴。

这一演变无疑形成了几个令人兴奋的趋势,从纸制记录日常金融交易到建立模拟计算设备,从开发第一代计算机到将人工智能(AI)和机器学习(ML)纳入金融科技数字产品,该行业经历了前所未有的增长。

全球有超过30,000家金融科技SaaS公司,其中许多品牌现在完全或部分依赖AI和ML技术。

通过这篇文章,让我们深入了解AI和ML是如何重塑现在的SaaS金融技术的,以及这些变化对于我们而言意味着什么。

二、AI和机器学习是什么?

人工智能和机器学习是目前不断成为新闻头条的热门词汇。它们听起来可能并不熟悉,因为大多数人都在交替使用它们,所以让我们先定义它们。

人工智能(AI)是人工智能的缩写,它通过为计算机配备不同的信息,利用人类的智慧来创造自给自足的系统或机制,同时它还可以模仿人类在物理世界中的行动。

一个简单的人工智能机器人是iPhone上的Siri或数字家用设备中的Alexa。这些人工智能程序被设计用来解决人类和计算机产生的问题;它们的主要功能是完成任何给定的任务,并在给定的时间范围内成功完成目标。

机器学习是一种技术,使计算机能够理解新的场景,并在面对更复杂的情况时完善其决策能力。机器学习利用计算机算法和分析方法建立预测模型,帮助解决不同的问题,特别是金融领域的问题。

三、AI和机器学习对SaaS金融科技的影响

如前所述,人工智能和机器学习通过开发有助于决策的预测分析,在今天的SaaS金融技术工具中发挥重要作用。这种人工智能的增值可以在各个领域感受到,从专业操作到普通用户。以下是人工智能和机器学习对SaaS金融技术的一些影响。

1.金融风险管理

银行和其他金融技术组织一直在寻找最小化风险的模型。基于人工智能的决策树方法通过为复杂和非线性的财务状况制定简单和可追溯的规则,从而使用这些规则影响风险管理。同时,支持向量技术有助于确定贷款的重要信贷风险。

2.收入预测

许多金融服务部门雇用了机器学习顾问,他们使用深度学习和机器学习技术,为其组织开发预测模型。

3.欺诈检测

由于消费者和资金安全无法得到完全保证,因此欺诈是许多银行都面临的问题。人工智能可以通过分析巨大的交易数据来发现隐藏的欺诈模式,从而帮助减少欺诈行为。它可以实时检测这种模式,并防止其发生。此外,机器学习的 "逻辑回归 "算法可以帮助理解欺诈模式并阻止其发生。

PayPal是使用人工智能进行欺诈检测的典型案例。PayPal使用机器学习算法来分析其平台的数据,并识别潜在的欺诈交易。

人工智能系统查看各种数据点,如交易地点、用于进行交易的设备、交易金额和用户在平台上的历史。

例如,如果交易是从一个通常不与用户账户相关联的设备进行的,或者如果交易金额比平时大得多,系统可能会标记该交易进行审查。PayPal的人工智能系统已被证明在检测欺诈方面非常有效。据该公司称,其系统可以检测出欺诈性交易,欺诈率仅占该公司收入的0.32%。这帮助PayPal每年避免了因欺诈而造成的数百万美元的损失。

4.客户支持

人工智能可以确保客户在正确的时间获得正确的金融信息。通过研究客户数据和重要的分析,人工智能可以根据客户的偏好或要求进行客户响应。SaaS品牌使用AI和ML的典型案例是Zendesk和Salesforce。他们的工具AnswerBot和Einstein可以理解客户的意图,并实时提供相关回应。该算法还能从每次互动中学习,并随着时间的推移变得更加聪明。

5.资产管理

像其他每个部门一样,人工智能和机器学习也影响了专业人士处理或管理金融资产的方式。有了人工智能,资产管理者可以自动制定客户报告和文件,提供详细的账户报表,并准确地执行更多的功能。

四、AI和ML在SaaS金融技术中的主要好处

将人工智能和机器学习纳入SaaS金融技术为整个行业带来了极大的利益。以下是整合人工智能(AI)和机器学习(ML)的一些关键点。

1.提高准确度

在引入机器学习技术之前,每天都有少量的金融交易被记录到账簿中。大量的交易和有限的理解能力导致了一些错误和不平衡的账户。人工智能和机器学习为准确性提供了空间,针对重复性的计算任务包括:账户平衡和账户分析,并保证这些计算工作的正确性。正因为这些新的进展,让结果更加准确,从而减少损失。

2.提高效率

在SaaS金融技术中使用人工智能和ML的另一个好处是提高效率,改善生产力,并减少完成任务所需的时间。使用人工智能聊天机器人来处理客户的要求,有助于提高客户支持的整体效率。

3.增强决策能力

人工智能和机器学习为SaaS技术的决策提供帮助。金融分析师可以很容易地分析数十亿的数据,研究股票的模式和趋势,并使用该技术做出战略性和有益的决定。

4.负担能力

几年前,只有富人才能负担得起个人财务顾问,这些顾问可以帮助富人管理财富和调节开支。但是,在基于人工智能的应用程序的当下,可以为任何人进行账单跟踪、股价预测、市场或加密货币分析,所有这些工作坐在家里就可以完成。

5.SaaS金融科技中人工智能和机器学习的挑战和风险

尽管将人工智能和机器学习纳入SaaS金融技术收益是显而易见的,但值得注意的是,同时也伴随着挑战。

包括如下风险:

1.投入

开发人工智能金融技术应用程序需要花费资金,为了收回这些成本,开发出的应用程序必须被公众使用。然而,与金融科技应用相比,人们更有可能在健身或食谱编撰的应用上花费50美元。

2.数据隐私

需要在应用价值、个人信息和数据隐私之间找到一个平衡点是相当难的。客户已经意识到数据隐私问题,并希望在注册时尽可能少地提供个人信息。如果你问了太多的问题或要求太多的设备访问,客户很可能会离开。如果几乎没有得到任何信息,又如何训练人工智能来开发更多的个性化功能呢?

3.算法和数据的偏见

人工智能和机器学习的成功往往受到数据偏见的挑战。这些偏见大多来自于没有机会接触到金融技术的少数群体,或者是训练人工智能的人类,他们的判断力出现偏差。偏见往往是由人类产生的——一旦输入就会传播到算法中。

六、结论

COVID-19事件以及相关政府举措带来工作场所的巨大变化,加速了全球范围内对尖端技术的采用。在封锁期间,人工智能驱动的企业不仅看到了生产力的提高,并推出了很多新的人工智能产品,跨领域的软件,以及对两者进行融合的用法。

由于人工智能和机器学习的不断发展,SaaS金融技术领域在未来几年可能会经历一场变革。这种变化将使更多的公司获得竞争优势,提高他们的财务业绩,并最终完成他们的财务管理业务目标。

原文链接:​​https://www.php.cn/link/63ceea56ae1563b4477506246829b386​

以上是人工智能和机器学习是如何重塑SaaS金融科技的?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles