边缘人工智能:部署前需要考虑的三个技巧
随着人工智能 (AI) 的成熟,采用率继续增加。根据最近的研究,35% 的组织正在使用人工智能,42% 的组织正在探索其潜力。虽然人工智能在云中得到了很好的理解并大量部署,但它在边缘仍然处于萌芽状态,并面临一些独特的挑战。
许多人全天都在使用人工智能,从汽车导航到跟踪步骤,再到与数字助理交谈。即使用户经常在移动设备上访问这些服务,计算结果仍然存在于人工智能的云使用中。更具体地说,一个人请求信息,该请求由云中的中央学习模型处理,然后将结果发送回该人的本地设备。
与云端 AI 相比,边缘 AI 的理解和部署频率更低。从一开始,人工智能算法和创新就依赖于一个基本假设——所有数据都可以发送到一个中心位置。在这个中心位置,算法可以完全访问数据。这使得算法能够像大脑或中枢神经系统一样构建其智能,对计算和数据拥有完全的权限。
但是,边缘的人工智能是不同的。它将智能分布在所有细胞和神经上。通过将智能推向边缘,我们赋予这些边缘设备代理权。这在医疗保健和工业制造等许多应用和领域中至关重要。
在边缘部署人工智能的原因
在边缘部署人工智能有三个主要原因。
保护个人身份信息 (PII)
首先,一些处理 PII 或敏感 IP(知识产权)的组织更愿意将数据留在其来源处——医院的成像机器或工厂车间的制造机器中。这可以降低通过网络传输数据时可能发生的“偏移”或“泄漏”风险。
最小化带宽使用
其次是带宽问题。将大量数据从边缘传送到云端会阻塞网络,在某些情况下是不切实际的。健康环境中的成像机器生成如此庞大的文件以致无法将它们传输到云或需要数天才能完成传输的情况并不少见。
简单地在边缘处理数据会更有效,尤其是当洞察力旨在改进专有机器时。过去,计算的移动和维护难度要大得多,因此需要将这些数据移动到计算位置。这种范式现在受到挑战,现在数据通常更重要且更难管理,导致用例保证将计算移动到数据位置。
避免延迟
在边缘部署 AI 的第三个原因是延迟。互联网速度很快,但不是实时的。如果存在毫秒很重要的情况,例如协助手术的机械臂或时间敏感的生产线,组织可能会决定在边缘运行 AI。
边缘人工智能面临的挑战以及如何解决这些挑战
尽管有这些好处,但在边缘部署 AI 仍然存在一些独特的挑战。以下是您应该考虑的一些提示,以帮助应对这些挑战。
模型训练的好与坏结果
大多数 AI 技术使用大量数据来训练模型。然而,在边缘的工业用例中,这通常会变得更加困难,因为大多数制造的产品都没有缺陷,因此被标记或注释为良好。由此产生的“好结果”与“坏结果”的不平衡使得模型更难学会识别问题。
依赖于没有上下文信息的数据分类的纯 AI 解决方案通常不容易创建和部署,因为缺乏标记数据,甚至会发生罕见事件。为 AI 添加上下文(或称为以数据为中心的方法)通常会在最终解决方案的准确性和规模方面带来好处。事实是,虽然人工智能通常可以取代人类手动完成的平凡任务,但在构建模型时,它会极大地受益于人类的洞察力,尤其是在没有大量数据可供使用的情况下。
从经验丰富的主题专家那里得到承诺,与构建算法的数据科学家密切合作,为 AI 学习提供了一个快速启动。
AI 无法神奇地解决或提供每个问题的答案
通常有许多步骤进入输出。例如,工厂车间可能有许多工作站,它们可能相互依赖。一个过程中工厂某个区域的湿度可能会影响稍后在不同区域的生产线中另一个过程的结果。
人们通常认为人工智能可以神奇地拼凑所有这些关系。虽然在许多情况下可以,但它也可能需要大量数据和很长时间来收集数据,从而导致非常复杂的算法不支持可解释性和更新。
人工智能不能生活在真空中。捕捉这些相互依赖关系将把边界从一个简单的解决方案推向一个可以随着时间和不同部署而扩展的解决方案。
缺乏利益相关者的支持会限制人工智能的规模
如果组织中的一群人对它的好处持怀疑态度,则很难在整个组织中扩展 AI。获得广泛支持的最好(也许是唯一)方法是从一个高价值、困难的问题开始,然后用人工智能解决它。
在奥迪,我们考虑解决焊枪电极更换频率的问题。但是电极成本低,这并没有消除人类正在做的任何平凡的任务。相反,他们选择了焊接工艺,这是整个行业普遍认同的难题,并通过人工智能显着提高了工艺质量。这激发了整个公司工程师的想象力,他们研究如何在其他流程中使用人工智能来提高效率和质量。
平衡边缘 AI 的优势和挑战
在边缘部署 AI 可以帮助组织及其团队。它有可能将设施转变为智能边缘,提高质量,优化制造过程,并激励整个组织的开发人员和工程师探索他们如何整合人工智能或推进人工智能用例,包括预测分析、提高效率的建议或异常检测。但它也带来了新的挑战。作为一个行业,我们必须能够在部署它的同时减少延迟、增加隐私、保护 IP 并保持网络平稳运行。
以上是边缘人工智能:部署前需要考虑的三个技巧的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

CentOS 关机命令为 shutdown,语法为 shutdown [选项] 时间 [信息]。选项包括:-h 立即停止系统;-P 关机后关电源;-r 重新启动;-t 等待时间。时间可指定为立即 (now)、分钟数 ( minutes) 或特定时间 (hh:mm)。可添加信息在系统消息中显示。

CentOS系统下GitLab的备份与恢复策略为了保障数据安全和可恢复性,CentOS上的GitLab提供了多种备份方法。本文将详细介绍几种常见的备份方法、配置参数以及恢复流程,帮助您建立完善的GitLab备份与恢复策略。一、手动备份利用gitlab-rakegitlab:backup:create命令即可执行手动备份。此命令会备份GitLab仓库、数据库、用户、用户组、密钥和权限等关键信息。默认备份文件存储于/var/opt/gitlab/backups目录,您可通过修改/etc/gitlab

检查CentOS系统中HDFS配置的完整指南本文将指导您如何有效地检查CentOS系统上HDFS的配置和运行状态。以下步骤将帮助您全面了解HDFS的设置和运行情况。验证Hadoop环境变量:首先,确认Hadoop环境变量已正确设置。在终端执行以下命令,验证Hadoop是否已正确安装并配置:hadoopversion检查HDFS配置文件:HDFS的核心配置文件位于/etc/hadoop/conf/目录下,其中core-site.xml和hdfs-site.xml至关重要。使用

在CentOS上对Zookeeper进行性能调优,可以从多个方面入手,包括硬件配置、操作系统优化、配置参数调整以及监控与维护等。以下是一些具体的调优方法:硬件配置建议使用SSD硬盘:由于Zookeeper的数据写入磁盘,强烈建议使用SSD以提高I/O性能。足够的内存:为Zookeeper分配足够的内存资源,避免频繁的磁盘读写。多核CPU:使用多核CPU,确保Zookeeper可以并行处理请

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

在 CentOS 上安装 MySQL 涉及以下步骤:添加合适的 MySQL yum 源。执行 yum install mysql-server 命令以安装 MySQL 服务器。使用 mysql_secure_installation 命令进行安全设置,例如设置 root 用户密码。根据需要自定义 MySQL 配置文件。调整 MySQL 参数和优化数据库以提升性能。

重启 SSH 服务的命令为:systemctl restart sshd。步骤详解:1. 访问终端并连接到服务器;2. 输入命令:systemctl restart sshd;3. 验证服务状态:systemctl status sshd。
