目录
引言
方法概览
实验结果
结论
首页 科技周边 人工智能 卷!MIT泊松流生成模型击败扩散模型,兼顾质量与速度

卷!MIT泊松流生成模型击败扩散模型,兼顾质量与速度

Apr 12, 2023 am 10:19 AM
图像 模型

引言

扩散模型最早来源于物理中的热力学,最近却在人工智能领域大放异彩。还有什么物理理论可以推动生成模型研究的发展呢?最近,来自 MIT 的研究者受到高维电磁理论的启发,提出了一种称作泊松流(Poisson Flow)的生成模型。理论上,这种模型具有直观的图像和严谨的理论;实验上,它在生成质量、生成速度和鲁棒性上往往比扩散模型更好。本文已被NeurIPS 2022接收。

图片

  • 论文地址:https://arxiv.org/abs/2209.11178  
  • 代码地址:https://github.com/Newbeeer/Poisson_flow

受到静电力学的启发,研究人员提出了一种新的生成模型,名为泊松流模型 (Poisson Flow Generative Models, or PFGM)。直观上,该研究可以把 N 维的数据点看成在 N+1 维空间中新增维度 z=0 平面上的一群正电荷,它们产生了高维空间中的电场。从 z=0 平面开始沿着它们产生的电场线往外走,该研究能够把样本送到一个半球面上(如图一所示)。这些电场线的方向对应于高维空间中泊松方程 (Poisson Equation)的解的梯度。研究人员证明了当半球的半径足够大的时候,电场线能够把在 z=0 平面上的电荷分布(也就是数据分布)转换为一个在半球面上的均匀分布(图二)。

PFGM 利用了电场线的可逆性来生成 z=0 平面上的数据分布:首先研究人员在大的半球面上均匀采样,接着让样本沿着电场线从球面往 z=0 平面运动,从而生成数据。由于沿着电场线的运动可以由一个常微分方程(ODE)描述,因此在实际的采样中研究人员只需要解一个由电场线方向决定的 ODE。通过电场,PFGM 将一个球面上的简单分布转换为一个复杂的数据分布。从这个角度来看,PFGM 可以被认为是一种连续的标准化流(Normalizing Flow)。

在图像生成实验中,PFGM 是当前在标准数据集 CIFAR-10 上表现最好的标准化流模型,取得了 2.35 的 FID score (图片质量的度量)。研究人员也展示了 PFGM 的其他一些用途,比如它能够计算图片的似然 (likelihood)、进行图片编辑和扩展到高分辨率的图片数据集上。此外,研究人员发现 PFGM 比近期大热的扩散模型 (Diffusion Models)有着三个优点

(1)在相同的网络结构上,PFGM 的 ODE 生成的样本质量远好于扩散模型的 ODE;(2)在与扩散模型的 SDE (随机微分方程)生成质量差不多的情况下,PFGM 的 ODE 达到了 10 倍 - 20 倍的加速;

(3)PFGM 在表达能力更弱的网络结构上比扩散模型鲁棒。

图片

图一:样本点沿着电场线运动 。上图:数据分布呈爱心状;下图:数据分布呈 PFGM 状


图片

图二:左图:泊松场在三维中的轨迹;右图:在图像上使用 PFGM 的前向 ODE 和反向 ODE

方法概览

注意到上述的过程将 N 维数据嵌入到了在 N+1 维(多了 z 维度)的空间中。为了方便区分,研究人员把 N 维数据和 N+1 维用 x 和图片表示。为了得到上述的高维电场线,需要解如下的泊松方程:

图片

其中图片是位于 z=0 平面上想要生成的数据分布;图片是势函数,也就是研究人员求解的目标。由于只需要知道电场线的方向,研究人员推导出了电场线的梯度(势函数的梯度)的解析形式:

图片

电场线的轨迹(见图二)能够被下面的 ODE 所描述:

图片

在下面的定理中,研究人员证明了上述 ODE 定义了一个高维半球面上的均匀分布和 z=0 平面上的数据分布的双射。这个结论与图一、图二的直观相同:可以通过电场线来还原数据分布。

图片

PFGM 的训练

给定一个从数据分布中采样得到数据集 图片,研究人员用该数据集所对应的电场线梯度,来近似数据分布所对应的电场线梯度:

图片

该电场线梯度是学习目标。该研究通过 perturb 函数在空间中进行选点,并且平方损失函数让神经网络图片去学习空间中归一化的电场线梯度图片, 具体算法如下:

图片

PFGM 的采样

当学习完归一化去学习空间中归一化的电场线梯度后,可以通过如下的 ODE 对数据分布进行采样:

该 ODE 通过减小 z,使得样本从大球面沿着电场线逐渐运动到 z=0 平面。此外,该研究提出了将大球面上的均匀分布投影到某个 z 平面以方便 ODE 模拟,并进一步通过变量替换来进一步加速采样。具体步骤请参见文章的 3.3 节。

实验结果

在表一中,该研究使用标准数据集 CIFAR-10 来评估不同模型。在该数据集上,PFGM 是表现最好的可逆标准化流模型,取得了 2.35 的 FID score。在使用相同的网络结构 (DDPM++/DDPM++ deep) 的条件下,PFGM 的表现优于扩散模型。研究人员同时观测到,在与扩散模型的 SDE (随机微分方程)生成质量差不多的情况下,PFGM 达到了 10 倍 - 20 倍的加速,更好地兼顾了生成质量与速度。此外,研究人员发现 PFGM 在表达能力更弱的网络结构上比扩散模型鲁棒,并且在更高维的数据集上依然优于同等条件下的扩散模型。具体请见文章的实验章节。在图三中,该研究可视化了 PFGM 生成图片的过程。

图片

表一:CIFAR-10 数据上的样本质量(FID, Inception)与采样步数 (NFE)

图片


图片

图片

图三:PFGM 在 CIFAR-10, CelebA 64x64, LSUN bedroom 256x256 上的采样过程

结论

该研究提出了一个基于泊松方程的生成模型 PFGM。这个模型预测 N+1 维的扩展空间中的归一化电场线梯度,并通过电场线对应的 ODE 来采样。实验中,该研究的模型是当前最好的标准化流模型,并在相同的网络结构上取得了比扩散模型更好的生成效果与更快的采样速度。PFGM 的采样过程对噪声更鲁棒,也能扩展到更高维的数据集中。研究人员期望 PFGM 能够在其他应用领域中也能取得亮眼表现,比如分子生成和 3D 数据生成。

以上是卷!MIT泊松流生成模型击败扩散模型,兼顾质量与速度的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! Mar 21, 2024 pm 05:21 PM

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

See all articles