首页 科技周边 人工智能 生成性人工智能令人忧心忡忡的十个理由

生成性人工智能令人忧心忡忡的十个理由

Apr 12, 2023 am 11:22 AM
人工智能 chatgpt

像 ChatGPT 这样的生成型人工智能模型是如此令人震惊,以至于现在有人声称,人工智能不仅可以与人类平起平坐,而且往往更加聪明。它们以令人眼花缭乱的风格抛出美妙的艺术品。它们能写出饱含细节、想法和知识的文本。生成的人工制品是如此多样,而且看来如此独特,以至于很难相信它们来自于机器。我们才刚刚开始发现生成性人工智能所能做的一切。

一些观察家认为,这些新的人工智能终于跨越了图灵测试的门槛。其他人则认为,这个门槛并没有被轻易超越,只是被过度吹捧。可是,这项杰作确实另个惊叹,以至于确实有一批人已经在走向失业的边缘。

但是,一旦人们见惯不怪,生成性人工智能天生的光环也与消退。一批观察者以正确的方式提出问题,让这些智能机器表达出或愚蠢或错误的内容。这已经成为当下的一种时髦。其中一些人使用了在小学艺术课上流行的老式逻辑炸弹,比如要求提供一张晚上的太阳或暴风雪中的北极熊的照片。其他人则提出了奇怪的请求,展示了人工智能上下文意识(也被称为常识)的局限性。那些对此有兴趣的人可以计算生成性人工智能失败的规律。

本文提出了生成式人工智能的十项缺点或缺陷。这份清能读来也许有点酸葡萄味,因为如果允许机器接管,他就会失去工作。你可以说我是一个支持人类团队的小人物,只不过希望人类在与在与机器的拼搏中能表现出英雄气概。尽管如此,我们是不是都应该有点担心呢?

1、剽窃

当像 DALL-E 和 ChatGPT 这样的生成型人工智能模型打造之初,它们实际上只是从其训练集中的数百万个例子中制造新的模式,其结果是对各种来源的剪切和粘贴的综合。如果人类这样做,就会被称为剽窃。

当然,人类也是通过模仿来学习。但是,在某些情况下,这种借鉴是如此明显,以至于会让一位小学老师感到不安。这种人工智能生成的内容由大块的文字组成,或多或少都是逐字逐句地呈现。然而,有时涉及到足够的混合或综合,即使是交给一组大学教授也很难发现其来源。无论如何,从中都不可能看到独特性。尽管这些机器闪亮夺目,但它们并没有能力生产出真正的新作品。

2、版权

虽然抄袭在很大程度上是学校才关心的,但著作权法却也适用于市场。当一个人抄袭另一个人的作品时,他们有可能被带到法院,可能会被处以数百万美元的罚款。但是人工智能呢?同样的规则是否适用于它们?

著作权法是一个复杂的话题,生成性人工智能的法律地位将需要花费数年才能解决。但请记住这一点:当人工智能开始生产看起来足够好的作品,使人类处于失业的边缘,其中一些人肯定会用他们新的业余时间提起诉讼。

3、无偿劳动

抄袭和版权并不是生成性人工智能引起的唯一法律问题。律师们已经在幻想着新的诉讼道德问题。举例来说,一家制作绘画程序的公司是否应该收集人类用户的绘画行为数据,然后将这些数据用于人工智能训练?人类是否应该为这种创造性劳动的使用而得到补偿?当前一代人工智能的成功,很大程度上源于对数据的获取。那么,当产生数据的人想要分一杯羹时会发生什么?哪些是公平的?什么可以被认定为合法?

4、信息不是知识

AI 特别善于模仿人类需要多年才能发展的那种智能。当人类学者介绍一位晦涩难懂的 17 世纪艺术家,或者用几乎被遗忘的文艺复兴时期的音调结构写出新的音乐时,我们有充分的理由留下深刻的印象。我们知道,这需要多年的研究来发展这种深度的知识。当人工智能只经过几个月的训练就做这些同样的事情时,其结果可能是令人眼花缭乱的精确和正确,但却缺少一些关键因素。

如果一台训练有素的机器能够在一个装满数十亿条记录的数字鞋盒中找到正确的旧收据,它也可以学习关于像 Aphra Behn 这样的诗人的一切知识。你甚至可能相信,机器是为了解码玛雅象形文字的含义而制造的。AI 可能看起来是在模仿人类创造力中俏皮和不可预测的一面,但它们无法真正做到。同时,不可预知性是推动创意创新的原因。像时尚圈这样的行业不仅沉迷于变化,而且被变化所定义。事实上,人工智能有它的位置,但是,老的来之不易的人类智能也是如此。

5、智力停滞不前

说到智力,人工智能本质上是机械的和基于规则的。一旦人工智能处理了一组训练数据,它就会创建一个模型,而这个模型并不会真正改变。一些工程师和数据科学家设想随着时间的推移逐渐重新训练人工智能模型,这样机器就能学会适应。但是,在大多数情况下,这个想法是要创建一个复杂的神经元集,以固定的形式编码某些知识。恒定性有它的位置,可能对某些行业有效。人工智能的危险在于,它将永远停留在其训练数据的时代潮流中。当我们人类变得如此依赖生成性人工智能,以至于我们无法再为训练模型产生新的材料时,又会发生什么?

6、隐私和安全

AI 的训练数据需要来自某处,而我们并不总是那么确定神经网络中会出现什么。如果 AI 从其训练数据中泄露个人信息怎么办?更糟糕的是,锁定人工智能要困难得多,因为它们被设计得如此灵活。一个关系型数据库可以限制对含有个人信息的特定表格的访问。但是,人工智能可以用几十种不同的方式进行查询。攻击者将很快学会如何以正确的方式提出正确的问题,以获得他们想要的敏感数据。举个例子,比如说某项资产的经纬度被锁定了。一个聪明的攻击者可能会问该地点几周内太阳升起的确切时刻。一个尽职的人工智能会尝试回答。教导人工智能保护私人数据我们还并不掌握。

7、未被察觉的偏见

如果你知道最早的大型机程序员创造了缩写词 GIGO 或 “垃圾进,垃圾出”,你就能明白从那时起他们就认识到计算机问题的核心。AI 的许多问题来自于糟糕的训练数据。如果数据集不准确或有偏见,结果就一定会反映出来。

生成式人工智能的核心硬件可能像 Spock(电视剧《星际旅行》的外星人主角)一样以逻辑为导向,但建造和训练机器的人类却不是这样。偏见和偏袒已经被证明确有途径进入人工智能模型。也许有人使用有偏见的数据来创建模型。也许他们添加了重写功能,以防止模型回答特定的热点问题。也许他们把硬性规定的答案放进去,然后变得难以检测。人类已经找到了许多方法来确保人工智能成为我们有害信仰的绝佳载体。

8、机器的愚蠢

我们很容易原谅人工智能模型犯错,因为它们在其他许多方面做得很好。只是,许多错误是很难预测的,因为人工智能的思维方式与人类不同。例如,许多文字转图像功能的用户发现,人工智能把相当简单的事情搞错了,比如算术。人类在小学时就学会了基本的算术,然后我们在各种各样的方面使用这种技能。让一个 10 岁的孩子画章鱼的草图,这个孩子几乎肯定会确定它有八条腿。当前版本的人工智能在涉及到数学的抽象和背景用途时往往会陷入困境。如果模型建造者对这种失误投入一些关注,这很容易改变,但还会有其他的失误。机器智能与人类智能不同,这意味着机器的愚蠢也会不同。

9、人类的易受骗性

有时在不知不觉中,我们人类往往会填补人工智能的空白。我们填补缺失的信息或插播答案。如果人工智能告诉我们亨利八世是杀害妻子的国王,我们不会质疑它,因为我们自己并不了解这段历史。我们只是提前假设人工智能是正确的,就像我们在有魅力的明星前欢呼雀跃的时候一样。如果一个说法听起来信心满满,那么人类的头脑往往愿意接受它就是真实和正确的。

对于生成性人工智能的用户来说,最棘手的问题是知道人工智能何时是错误的。机器不能像人类那样撒谎,但这使它们更加危险。它们可以产生几段完全准确的数据,然后转向猜测,甚至是彻底的诽谤,而没有人能意识到。二手车交易商或扑克牌手往往知道他们什么时候在作假,而且大多数人都有暴露他们诽谤行为的证据。但人工智能没有。

10、无限的丰富性

数字内容是可以无限复制的,这已经使许多围绕稀缺性建立的经济模式变得紧张。生成性人工智能将更多地打破这些模式。生成性人工智能将使一些作家和艺术家失去工作;它也颠覆了我们赖以生存的许多经济规则。当广告和内容都可以无休止地重新组合和再生时,广告支持的内容还能发挥作用吗?互联网的免费部分是否会沦为一个机器人点击网页上的广告的世界,所有这些都是由生成性的AI精心制作和无限复制的?

这种轻松的丰富性可能会破坏经济的各个角落。如果这些代币可以永远被复制,人们还会继续为不可复制的代币买单吗?如果制作艺术如此容易,它还会被尊重吗?它还会是特别的吗?如果它不特别,会有人关心吗?当一切都被视为理所当然时,是否会失去价值?这就是莎士比亚说到“The slings and arrows of outrageous fortune”时想表达的意思吗?让我们不要试图自己回答这此问题。让我们向生成型人工智能寻求答案。这个答案将是有趣的、奇特的,并最终神秘地被困在正确与错误之间的某个冥界。

来源:www.cio.com

以上是生成性人工智能令人忧心忡忡的十个理由的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

ChatGPT 现在允许免费用户使用 DALL-E 3 生成每日限制的图像 ChatGPT 现在允许免费用户使用 DALL-E 3 生成每日限制的图像 Aug 09, 2024 pm 09:37 PM

DALL-E 3 于 2023 年 9 月正式推出,是比其前身大幅改进的型号。它被认为是迄今为止最好的人工智能图像生成器之一,能够创建具有复杂细节的图像。然而,在推出时,它不包括

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

VSCode 前端开发新纪元:12款 AI 代码助手大推荐 VSCode 前端开发新纪元:12款 AI 代码助手大推荐 Jun 11, 2024 pm 07:47 PM

在前端开发的世界里,VSCode以其强大的功能和丰富的插件生态,成为了无数开发者的首选工具。而近年来,随着人工智能技术的飞速发展,VSCode上的AI代码助手也如雨后春笋般涌现,极大地提升了开发者的编码效率。VSCode上的AI代码助手,如雨后春笋般涌现,极大地提升了开发者的编码效率。它利用人工智能技术,能够智能地分析代码,提供精准的代码补全、自动纠错、语法检查等功能,极大地减少了开发者在编码过程中的错误和繁琐的手工工作。有今天,就为大家推荐12款VSCode前端开发AI代码助手,助你在编程之路

See all articles