目录
机器学习在零售业中的作用
重新定义零售业的10个机器学习用例
1、定向广告
2、情境购物
3、推荐引擎
4、动态定价
5、聊天机器人
6、供应链管理
7、交付优化
8、自动驾驶汽车
9、视频监控
10、欺诈检测
利用机器学习克服现代挑战
首页 科技周边 人工智能 零售业中的机器学习:要点和十个关键应用

零售业中的机器学习:要点和十个关键应用

Apr 12, 2023 pm 01:25 PM
机器学习 零售业

零售业中的机器学习:要点和十个关键应用

近年来,在封控、供应链中断和能源危机之间,零售商们一定觉得自己像头恐龙,试图躲避小行星雨,避免灭绝。

但与那些巨大的史前爬行动物不同,零售业可以依靠一系列技术创新来更好地应对困难时期的这些挑战。

而最有影响力的工具之一无疑是人工智能,包括其强大的子分支机器学习(ML)。让我们简要介绍一下这项技术的性质,并探讨零售业中机器学习的关键用例。

机器学习在零售业中的作用

零售业中的机器学习依赖于自我改进的计算机算法,这些算法用于处理数据,发现变量之间的重复模式和异常,并自主学习这种关系如何影响或决定行业的趋势、现象和业务场景。

机器学习系统的自我学习和情境理解潜力可以在零售业中用于:

  • 确定推动零售业的潜在动力。例如,基于机器学习的数据分析系统在营销中被广泛采用,以通过基于客户数据的推荐引擎和有针对性的广告来个性化购物体验,还可以预测商品需求或其他市场趋势,从而优化库存管理、物流和定价策略。
  • 推动与人工智能相关的认知技术,例如计算机视觉和自然语言处理 (NLP),它们分别从视觉和语言模式中识别和学习,以模仿人类的视觉和交流。零售商通常使用这些工具从文本和视觉来源收集数据,为聊天机器人和情境购物等交互式解决方案提供动力,或用于视频监控。

重新定义零售业的10个机器学习用例

零售商如何从上述机器学习算法的实际功能中受益?以下是典型零售场景中最相关的机器学习用例。

1、定向广告

虽然主要用于电子商务,但有针对性的营销是一种将潜在客户引导至在线平台和传统商店的强大工具。这涉及根据一系列行为、心理、人口统计和地理参数(例如他们的购买和浏览历史、年龄、性别、兴趣、地区等)对用户进行细分,并针对他们推出完全个性化的广告和促销活动。

2、情境购物

一种不同的、更具互动性的解决方案是情境购物,它可以吸引用户的注意力,并将他们引向你的电子商务平台。该营销工具利用机器学习和计算机视觉来识别和指出社交媒体上视频和图片中显示的商品,同时提供一种“快捷方式”来访问在线商店的相关商品页面。

3、推荐引擎

一旦用户登陆在线平台,他们可能会在海量的商品中迷失方向。推荐引擎是一种强大的工具,旨在将客户可能实际需要的商品推到他们眼前。

为了提供量身定制的建议,这些系统可以采用基于内容的过滤方法,即推荐与过去购买的商品具有相似特征的商品,或者选择协作过滤,这意味着推荐具有相似购买模式、个人特征和兴趣的其他客户订购的商品。

4、动态定价

由于机器学习,产品推荐和广告并不是唯一动态变化的东西。如今,大多数在线商店和电子商务平台都会根据产品需求和供应的波动、竞争对手的促销和定价策略、更广泛的销售趋势等因素不断调整价格。

5、聊天机器人

聊天机器人和虚拟助手是由机器学习和 NLP 提供支持的高度交互工具,能够为客户提供 24/7 的用户支持(包括有关可用产品和配送选项的信息),同时发送提醒、优惠券和个性化建议,以增加销售额。

6、供应链管理

产品补货和其他库存管理操作绝不能碰运气。为了更好地匹配商品供应和需求、优化仓库的空间利用率、避免食品变质,值得依赖机器学习算法的分析和预测能力。这意味着要考虑多个变量,例如价格波动或基于季节性的购买模式,来预测未来的销售趋势,并因此规划适当的补货计划。

7、交付优化

可以通过机器学习增强物流的另一个方面是商品交付。由物联网传感器和摄像头网络收集的交通和天气数据为机器学习驱动的系统提供动力,可以轻松计算出最快的交付路线。并且,通过处理用户数据,它们可以推荐合适的交付方法,以更好地满足客户需求。

这种方法的典范应该是亚马逊实施的基于机器学习的预期发货技术,该技术允许根据客户的购买模式预测未来的交付,并将产品转移到离客户最近的仓库,因此能够在客户实际下单时更快、更便宜地发货。

8、自动驾驶汽车

这种用于商品交付的机器学习和计算机视觉的实施方式还远未完善和大规模实施,然而,像亚马逊和克罗格这样的公司正在押注这项技术,不久我们可能会依靠自动驾驶汽车来加快商品配送。

9、视频监控

由机器学习驱动的计算机视觉系统可以发现窃贼。这些工具与传统视频监控解决方案的主要区别在于,后者基于一种相当不准确的基于规则的方法来识别闯入者,这种方法存在大量误报。另一方面,机器学习系统可以识别更微妙的行为模式,并在可疑情况发生时提醒管理人员。

10、欺诈检测

对于在线零售商和电子商务平台而言,盗贼更有可能从信用卡中偷钱,而不是偷拿货架上的商品。由于机器学习算法旨在识别重复出现的模式,因此它们也可以查明任何偏离正常的事件,包括异常交易频率或账户数据不一致,并将其标记为可疑,以供进一步检查。

利用机器学习克服现代挑战

事实证明,人工智能、机器学习和认知技术在增加利润和优化成本、个性化客户体验、提高物流和库存管理方面的运营效率,以及确保安全的零售环境方面具有不可估量的价值。

事实上,Fortune Business Insight 的 2020 年报告强调,到 2028 年,全球零售业人工智能市场预计将达到 311.8 亿美元,其中机器学习是其核心部分。

从零售业的角度来看,这将使机器学习成为一个灯塔,使其能够在经历两年多的风浪之后,找到正确的航线并停靠在安全的港口。(编译:iothome)

以上是零售业中的机器学习:要点和十个关键应用的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

15个值得推荐的开源免费图像标注工具 15个值得推荐的开源免费图像标注工具 Mar 28, 2024 pm 01:21 PM

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

通过学习曲线识别过拟合和欠拟合 通过学习曲线识别过拟合和欠拟合 Apr 29, 2024 pm 06:50 PM

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通透!机器学习各大模型原理的深度剖析! 通透!机器学习各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

人工智能在太空探索和人居工程中的演变 人工智能在太空探索和人居工程中的演变 Apr 29, 2024 pm 03:25 PM

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

See all articles