研究表明大型语言模型在逻辑推理方面存在问题
译者 | 李睿
审校 | 孙淑娟
在具有感知功能的聊天机器人成为热门话题之前,大型语言模型(LLM)就已经引起了人们更多的兴奋和担忧。近年来,经过大量文本训练的深度学习模型——大型语言模型(LLM) 在几个用于衡量语言理解能力的基准方面表现出色。
诸如GPT-3和LaMDA之类的大型语言模型设法在较长的文本中保持连贯性。它们似乎对不同的主题很了解,并在冗长的对话中保持一致。大型语言模型(LLM)已经变得如此令人信服,以至于有些人将它们与人格和更高形式的智力联系在一起。
但是大型语言模型(LLM)能像人类一样进行逻辑推理吗?根据加州大学洛杉矶分校科学家发布的一篇研究论文,在大型语言模型(LLM)中使用的深度学习架构Transformers并没有学习模拟推理功能。与其相反,电脑们找到了明智的方法来学习推理问题中固有的统计特征。
研究人员在一个有限的问题空间中测试了当前流行的Transformer架构BERT。他们的研究结果表明,BERT可以准确地响应训练空间中分布内示例的推理问题,但不能推广到基于相同问题空间的其他分布中的示例。
而这些测试突出了深度神经网络的一些缺点以及用于评估它们的基准。
1.如何衡量人工智能中的逻辑推理?
人工智能系统针对自然语言处理和理解问题有几个基准测试,例如GLUE、SuperGLUE、SNLI和SqUAD。随着Transformer规模变得越来越大,并在更大的数据集上接受训练,Transformer已经能够在这些基准上逐步改进。
值得注意的是,人工智能系统在这些基准上的表现通常与人类智能进行比较。人类在这些基准上的表现与常识和逻辑推理能力密切相关。但目前尚不清楚大型语言模型的改进是因为它们获得了逻辑推理能力,还是因为它们接触了大量文本。
为了验证这一点,加州大学洛杉矶分校的研究人员开发了SimpleLogic,这是一类基于命题逻辑的逻辑推理问题。为了确保语言模型的推理能力经过严格测试,研究人员通过使用模板语言结构消除了语言差异。SimpleLogic问题由一组事实、规则、查询和标签组成。事实是已知为“真”的谓词。规则是条件,定义为条款。查询是机器学习模型必须响应的问题。标签是查询的答案,也就是“真”或“假”。 SimpleLogic问题被编译成连续的文本字符串,其中包含语言模型在训练和推理期间所期望的信号和分隔符。
以SimpleLogic格式提出的问题SimpleLogic的特点之一是它的问题是自包含的,不需要先验知识。这一点尤其重要,因为正如许多科学家所说,当人类说话时,他们忽略了共享的知识。这就是为什么当被问及每个人都知道的基本世界知识的问题时,语言模型经常陷入陷阱的原因。相比之下,SimpleLogic为开发人员提供解决其问题所需的一切。 因此,任何查看SimpleLogic格式提出的问题的开发人员都应该能够推断其规则,并能够处理新示例,无论他们的背景知识如何。
2.统计特征和逻辑推理
研究人员证明,SimpleLogic中的问题空间可以用一个推理函数来表示。研究人员进一步表明,BERT有足够的能力解决SimpleLogic中的所有问题,它们可以人工调整机器学习模型的参数来表示推理功能。
然而,当它们在SimpleLogic示例数据集上训练BERT时,该模型无法自行学习推理功能。机器学习模型设法在一个数据分布上实现近乎完美的准确性。但它并没有推广到同一问题空间内的其他分布。尽管训练数据集覆盖了整个问题空间,并且所有分布都来自同一推理函数,但情况仍然如此。
BERT Transformer模型的容量足以表示SimpleLogic的推理功能
(注:这与分布外泛化挑战不同,后者适用于开放空间问题。当模型无法泛化到OOD数据时,当处理不在其训练集分布范围内的数据时,其性能会显著下降。)
研究人员写道:“经过进一步调查,我们为这个悖论提供了一个解释:仅在分布测试示例上达到高精度的模型还没有学会推理。事实上,该模型已经学会在逻辑推理问题中使用统计特征来进行预测,而不是模拟正确的推理功能。”
这一发现凸显了将深度学习用于语言任务的一个重要挑战。神经网络非常擅长发现和拟合统计特征。在某些应用程序中,这可能非常有用。例如,在情感分析中,某些词和情感类别之间存在很强的相关性。
然而,对于逻辑推理任务,即使存在统计特征,其模型也应该尝试找到并学习潜在的推理功能。
研究人员写道:“当我们试图对神经模型进行端到端的训练,以解决既涉及逻辑推理又涉及先验知识且呈现语言差异的自然语言处理(NLP)任务时,应该小心谨慎。”他们强调,SimpleLogic带来的挑战在现实世界中变得更加严峻,大型语言模型(LLM)所需的大量信息根本不包含在数据中。
研究人员观察到,当他们从训练数据集中删除一个统计特征时,语言模型在相同问题空间的其他分布上的性能得到了改善。然而,问题是发现和删除多个统计特征说起来容易做起来难。正如研究人员在论文中指出的那样,“此类统计特征可能数不胜数,并且极其复杂,因此很难从训练数据中删除。”
3.深度学习中的推理
不幸的是,随着语言模型规模的变大,逻辑推理问题并没有消失。它只是隐藏在庞大的架构和非常大的训练语料库中。大型语言模型(LLM)可以描述事实并且很好地将句子拼接在一起,但是在逻辑推理方面,他们仍然使用统计特征进行推理,这不是一个坚实的基础。而且,没有迹象表明通过向Transformers添加层、参数和注意力头,逻辑推理的差距将被弥合。
这篇论文与其他显示神经网络在学习逻辑规则方面的局限性的工作一致,例如生命游戏或视觉数据的抽象推理。该论文强调了当前语言模型面临的主要挑战之一。正如加州大学洛杉矶分校的研究人员所指出的,“一方面,当一个模型被训练来从数据中学习一项任务时,它总是倾向于学习统计模式,这些模式固有地存在于推理示例中;然而,另一方面,逻辑规则从不依赖统计模式来进行推理。由于很难构建一个不包含统计特征的逻辑推理数据集,因此从数据中学习推理是很困难的。”
原文链接:https://bdtechtalks.com/2022/06/27/large-language-models-logical-reasoning/
以上是研究表明大型语言模型在逻辑推理方面存在问题的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

7月29日,在AITO问界第四十万台新车下线仪式上,华为常务董事、终端BG董事长、智能汽车解决方案BU董事长余承东出席发表演讲并宣布,问界系列车型将于今年8月迎来华为干昆ADS3.0版本的上市,并计划在8月至9月间陆续推送升级。 8月6日即将发布的享界S9将首发华为ADS3.0智能驾驶系统。华为干昆ADS3.0版本在激光雷达的辅助下,将大幅提升智驾能力,具备融合端到端的能力,并采用GOD(通用障碍物识别)/PDP(预测决策规控)全新端到端架构,提供车位到车位智驾领航NCA功能,并升级CAS3.0全

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
