机器学习中必学的四种交叉验证技术
介绍
考虑在数据集上创建模型,但它在看不见的数据上失败。
我们不能简单地将模型拟合到我们的训练数据中,然后坐等它在真实的、看不见的数据上完美运行。
这是一个过度拟合的例子,我们的模型已经提取了训练数据中的所有模式和噪声。为了防止这种情况发生,我们需要一种方法来确保我们的模型已经捕获了大多数模式并且不会拾取数据中的每一点噪声(低偏差和低方差)。处理此问题的众多技术之一是交叉验证。
了解交叉验证
假设在一个特定的数据集中,我们有 1000 条记录,我们train_test_split()在上面执行。假设我们有 70% 的训练数据和 30% 的测试数据random_state = 0,这些参数导致 85% 的准确度。现在,如果我们设置random_state = 50假设准确度提高到 87%。
这意味着如果我们继续选择不同random_state的精度值,就会发生波动。为了防止这种情况,一种称为交叉验证的技术开始发挥作用。
交叉验证的类型
留一交叉验证 (LOOCV)
在LOOCV中,我们选择 1 个数据点作为测试,剩下的所有数据都将是第一次迭代中的训练数据。在下一次迭代中,我们将选择下一个数据点作为测试,其余的作为训练数据。我们将对整个数据集重复此操作,以便在最终迭代中选择最后一个数据点作为测试。
通常,要计算迭代交叉验证过程的交叉验证 R²,您需要计算每次迭代的 R² 分数并取它们的平均值。
尽管它会导致对模型性能的可靠且无偏的估计,但它的执行计算成本很高。
2. K-fold 交叉验证
在K-fold CV中,我们将数据集拆分为 k 个子集(称为折叠),然后我们对所有子集进行训练,但留下一个 (k-1) 个子集用于评估训练后的模型。
假设我们有 1000 条记录并且我们的 K=5。这个 K 值意味着我们有 5 次迭代。对于测试数据要考虑的第一次迭代的数据点数从一开始就是 1000/5=200。然后对于下一次迭代,随后的 200 个数据点将被视为测试,依此类推。
为了计算整体准确度,我们计算每次迭代的准确度,然后取其平均值。
我们可以从这个过程中获得的最小准确度将是所有迭代中产生的最低准确度,同样,最大准确度将是所有迭代中产生的最高准确度。
3.分层交叉验证
分层 CV是常规 k 折交叉验证的扩展,但专门针对分类问题,其中的分割不是完全随机的,目标类之间的比率在每个折中与在完整数据集中的比率相同。
假设我们有 1000 条记录,其中包含 600 条是和 400 条否。因此,在每个实验中,它都会确保填充到训练和测试中的随机样本的方式是,每个类的至少一些实例将是存在于训练和测试分裂中。
4.时间序列交叉验证
在时间序列 CV中有一系列测试集,每个测试集都包含一个观察值。相应的训练集仅包含在形成测试集的观察之前发生的观察。因此,未来的观察不能用于构建预测。
预测精度是通过对测试集进行平均来计算的。此过程有时被称为“对滚动预测原点的评估”,因为预测所基于的“原点”会及时前滚。
结论
在机器学习中,我们通常不想要在训练集上表现最好的算法或模型。相反,我们需要一个在测试集上表现出色的模型,以及一个在给定新输入数据时始终表现良好的模型。交叉验证是确保我们能够识别此类算法或模型的关键步骤。
以上是机器学习中必学的四种交叉验证技术的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

Go语言在机器学习领域的应用潜力巨大,其优势在于:并发性:支持并行编程,适合机器学习任务中的计算密集型操作。高效性:垃圾收集器和语言特性确保代码高效,即使处理大型数据集。易用性:语法简洁,学习和编写机器学习应用程序容易。

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的
