Github七月超热AI项目榜单还有续集!女娲无限版只能排第3?
七月最受欢迎的AI研究榜单第二弹来了!
上一波榜单是根据推特点赞、转发和Github星数排序的,但有网友吐槽说推特点赞数可以机刷,另外推特点赞用户不一定懂研究。
这次,作者@bycloudai吸取经验,这次的指标不用推特点赞数了,改成了Github上的星数。
虽然这次的指标也算不上有多专业吧,但比起推特,能逛Github的多少可以认为和AI研究关系更密切。
另外,作者在榜单开头也明确说了,这个榜属于自己没事排来玩玩的野榜,仅供娱乐。
话虽这么说,此次的「续集榜单」基本仍保持上期风格,对Top10分别给出资源库地址、论文链接、题目、作者和发文单位。
来看看这次「改良版」七月最火AI研究都有哪些研究上榜~
Top1:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
作者:Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao机构:「中央研究院」信息科学研究所Github星数:3.8k
摘要:YOLOv7在5FPS到160FPS范围内的速度和精度都超过了所有已知的物体检测器,并且在 GPU V100上所有高于30FPS的实时物体检测器中具有最高的精度56.8%AP。YOLOv7-E6 目标检测器 (56 FPS V100, 55.9%AP) 比基于Transformer的检测器 SWIN-L Cascade-Mask R-CNN (9.2 FPS A100, 53.9% AP) 的速度和精度分别高出了509%和2%。
值得一提的是,这篇论文的一作Chien-Yao wang(王建尧)是哥大的一名机器工程方向的研究生,现在是Intel的一名Chrome软件工程师。
Top2:Text-Guided Synthesis of Artistic Images with Retrieval-Augmented Diffusion Models
作者:Robin Rombach, Andreas Blattmann, and Bjorn Ommer机构:路德维希-马克西米利安-慕尼黑大学(Ludwig-Maximilians-Universität München)
Github星数:2.4k
摘要:新的架构最近改进了生成图像合成,从而在各种任务中实现了出色的视觉质量。尤其值得注意的是「AI-Art」领域。通过结合语音和图像合成模型,建立了所谓的“提示工程”,其中使用精心挑选和组合的句子来在合成图像中实现一定的视觉风格。
本文提出了一种基于检索增强扩散模型 (RDM) 的替代方法。在RDM中,在每个训练实例的训练期间从外部数据库中检索一组最近邻,并且扩散模型以这些信息样本为条件。
来看看论文中的AI-Art的作品效果~
Top3:NUWA-Infinity: Autoregressive over AutoregressiveGeneration for Infinite Visual Synthesis
作者:吴晨飞,梁健,Xiaowei Hu等机构:微软亚洲研究院、北京大学、微软Azure AIGithub星数:2.4k
排在第三位的是此前备受关注的全华班AI大作NUWA INFINITY。
4、Training Transformers Together(1K星)
作者:Alexander Borzunov,Max Ryabinin,Tim Dettmers等机构:俄罗斯国立高等经济学院、华盛顿大学等
5、Theseus:A Library for Differentiable Nonlinear Optimization(791星)
作者:Luis Pineda,Taosha Fan,Maurizio Monge机构:Meta AI,Reality Labs Research
6、k-means Mask Transformer(704星)
发文单位:约翰霍普金斯大学、谷歌研究院资源库:https://github.com/google-research/deeplab2论文:https://arxiv.org/abs/2207.04044v1
7、XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model (699星)
发文单位:伊利诺伊大学厄巴纳香槟分校资源库:https://github.com/hkchengrex/XMem论文:https://arxiv.org/abs/2207.07115v2
8、TinyViT: Fast Pretraining Distillation for Small Vision Transformers(656星)
发文单位:微软研究院、微软云+AI资源库:https://github.com/microsoft/cream论文:https://arxiv.org/abs/2207.10666v1
9、Towards Grand Unification of Object Tracking (644星)
发文单位:大连理工大学、字节跳动、香港大学、鹏程实验室
资源库:ttps://github.com/masterbin-iiau/unicorn论文:https://arxiv.org/abs/2207.07078v3
10、Multiface: A Dataset for Neural Face Rendering(337星)
发文单位:Meta现实实验室资源库:https://github.com/facebookresearch/multiface论文:https://arxiv.org/abs/2207.11243v1
以上是Github七月超热AI项目榜单还有续集!女娲无限版只能排第3?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Vue.js 中字符串转对象时,首选 JSON.parse() 适用于标准 JSON 字符串。对于非标准 JSON 字符串,可根据格式采用正则表达式和 reduce 方法或解码 URL 编码字符串后再处理。根据字符串格式选择合适的方法,并注意安全性与编码问题,以避免 bug。

利用地理空间技术高效处理700万条记录并创建交互式地图本文探讨如何使用Laravel和MySQL高效处理超过700万条记录,并将其转换为可交互的地图可视化。初始挑战项目需求:利用MySQL数据库中700万条记录,提取有价值的见解。许多人首先考虑编程语言,却忽略了数据库本身:它能否满足需求?是否需要数据迁移或结构调整?MySQL能否承受如此大的数据负载?初步分析:需要确定关键过滤器和属性。经过分析,发现仅少数属性与解决方案相关。我们验证了过滤器的可行性,并设置了一些限制来优化搜索。地图搜索基于城

远程高级后端工程师职位空缺公司:Circle地点:远程办公职位类型:全职薪资:$130,000-$140,000美元职位描述参与Circle移动应用和公共API相关功能的研究和开发,涵盖整个软件开发生命周期。主要职责独立完成基于RubyonRails的开发工作,并与React/Redux/Relay前端团队协作。为Web应用构建核心功能和改进,并在整个功能设计过程中与设计师和领导层紧密合作。推动积极的开发流程,并确定迭代速度的优先级。要求6年以上复杂Web应用后端

Vue和Element-UI级联下拉框v-model绑定常见的坑点:v-model绑定的是一个代表级联选择框各级选中值的数组,而不是字符串;selectedOptions初始值必须为空数组,不可为null或undefined;动态加载数据需要使用异步编程技巧,处理好异步中的数据更新;针对庞大数据集,需要考虑使用虚拟滚动、懒加载等性能优化技术。

总结:将 Vue.js 字符串数组转换为对象数组有以下方法:基本方法:使用 map 函数,适合格式规整的数据。高级玩法:使用正则表达式,可处理复杂格式,但需谨慎编写,考虑性能。性能优化:考虑大数据量,可使用异步操作或高效数据处理库。最佳实践:清晰的代码风格,使用有意义的变量名、注释,保持代码简洁。

Git和GitHub不是同一回事。Git是版本控制系统,GitHub是基于Git的代码托管平台。Git用于管理代码版本,GitHub提供在线协作环境。

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。
