使用AI实时纠正增材制造错误
麻省理工学院(MIT)的研究人员训练了一个机器学习模型来监控和调整3D打印过程,以实时纠正错误。
可用于3D打印的新材料正在不断开发,但弄清楚如何使用它们进行打印可能是一个复杂、成本高昂的难题。通常,操作员必须使用手动试验和错误,可能会进行数千次打印以确定理想参数,从而始终如一地有效地打印新材料。
MIT的研究人员已经使用人工智能来简化该程序。该机构的科学家开发了一种新的机器学习系统,该系统使用计算机视觉来观察制造过程,可以实时纠正材料处理方式的错误。
他们使用仿真来教神经网络如何调整打印参数以最小化错误,然后将该控制器应用于真正的3D打印机。新系统与其他现有的3D打印控制器相比,能更准确地打印物体。
这项工作避免了打印数千或数百万个真实对象来训练神经网络的昂贵过程。它可以使工程师更容易地将新材料整合到他们的3D打印产品中,这可以帮助他们开发具有特殊电气或化学特性的产品。它还可以帮助技术人员在材料或环境条件意外变化时对打印过程进行调整。
"这个项目确实是建立一个使用机器学习来学习复杂控制策略的制造系统的第一个示范,"负责该项目的麻省理工学院电气工程和计算机科学教授Wojciech Matusik说,"如果你有更智能的制造设备,它们可以实时适应工作场所不断变化的环境,以提高产量或系统的准确性,那么你就可以从机器中获取更多的价值。"
拣选参数
确定数字化制造过程的理想参数可能是该过程中最昂贵的部分之一,因为需要大量的试错。一旦技术人员找到一个运行良好的组合,这些参数只适用于一种特定情况。他们几乎没有关于材料在其他环境、不同硬件上或新批次是否表现出不同特性的行为的数据。
使用机器学习系统也充满了挑战。首先,研究人员需要实时测量3D打印机上发生的事情。
为此,研究人员开发了一种机器视觉系统,使用两个针对3D打印机喷嘴的摄像头。该系统在材料沉积时向材料发出光照射,并根据通过的光线量计算材料的厚度。"你可以把视觉系统想象成一双眼睛实时观察这个过程,"Foshey说。
然后,控制器将处理从视觉系统接收的图像,并根据它看到的任何错误,调整进料速率和打印机的方向。
但是,训练基于神经网络的控制器来理解这种制造过程是数据密集型的,并且需要进行数百万次打印。因此,研究人员建造了一个模拟器。
成功模拟
为了更好地训练控制器,他们使用了一个称为强化学习的过程,在这个过程中,模型通过试错来学习并获得奖励。该模型的任务是选择打印参数,以便在模拟环境中创建特定对象。在显示预期输出后,当模型选择的参数最小化其打印与预期结果之间的误差时,模型将获得奖励。
在这种情况下,"错误"意味着模型要么分配了过多的材料,将其放置在应该保持开放的区域,要么没有分配足够的材料,留下应该填充的开放点。随着模型执行更多的模拟打印,它更新了其控制策略以最大化奖励,变得越来越准确。
然而,现实世界比模拟更混乱。在实践中,条件通常由于印刷过程中的微小变化或噪音而变化。因此,研究人员创建了一个数值模型,该模型近似于3D打印机的噪声。他们使用这个模型为仿真添加噪声,从而产生更逼真的结果。
"我们发现有趣的是,通过实现这个噪声模型,我们能够将纯粹在仿真中训练的控制策略转移到硬件上,而无需进行任何物理实验的训练,"Foshey说,"而且之后,我们不需要对实际设备进行任何微调。"
当测试控制器时,它比之前评估的任何其他控制方法更准确地打印物体。它在填充印刷中表现特别好,填充印刷是打印物体的内部。其他一些控制器沉积了如此多的材料,以至于打印的物体凸起,但研究人员的控制器调整了打印路径,使物体保持水平。
他们的控制策略甚至可以了解材料在沉积后如何扩散并相应地调整参数。
自动调整
"我们还能够设计控制策略,可以动态控制不同类型的材料。因此,如果您在现场有一个制造流程,并且想要更改材料,则不必重新验证制造流程。你可以只加载新材料,控制器就会自动调整。"Foshey说。
现在他们已经展示了这种技术对3D打印的有效性,研究人员希望为其他制造工艺开发控制器。他们还想看看如何修改这种方法,以应对多层材料或同时打印多个材料的情况。此外,他们的方法假设每种材料都有固定的粘度,但未来的迭代可以使用AI来实时识别和调整粘度。
麻省理工学院在增材制造方面有着悠久的历史,并催生了多家主要的3D打印公司,如Desktop Metal和VulcanForms。这项工作部分得到了FWF Lise-Meitner计划,欧洲研究委员会启动补助金和美国国家科学基金会的支持。
以上是使用AI实时纠正增材制造错误的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
