首页 科技周边 人工智能 大模型铺天盖地出现后,计算机科学终成「自然科学」

大模型铺天盖地出现后,计算机科学终成「自然科学」

Apr 12, 2023 pm 05:22 PM
计算机 人工智能 自然科学

大模型铺天盖地出现后,计算机科学终成「自然科学」

​当前的人工智能(AI)处在一个奇妙的时代,时常会出现让人惊叹的隐性知识(Polanyi 的复仇和人工智能的新型浪漫与隐性知识,https://bit.ly/3qYrAOY),但可以确信在未来相当长的一段时间,计算机无法完成这个任务。最近出现的让人感兴趣的研究是基于 Transformer 架构的大型学习系统,基于大网络规模的多模态语料库和数十亿参数的训练。典型例子如大型语言模型、响应任意形式文本 prompt 的 GPT3 和 PALM、将文本转换成图像的语言 / 图像模型 DALL-E 和 Imagen(甚至具有通用行为的模型如 GATO)。

大型学习模型的出现从根本上改变了人工智能研究的性质。最近研究人员在使用 DALL-E 时,认为它似乎已经发展出自己的特有语言​,如果人类能掌握它,或许可以更好地与 DALL-E 交互。也有研究人员发现,可以通过在 prompt 中添加某些神奇的咒语(比如「让我们一步步地思考」)来改善 GPT3 对推理问题的表现。现在 GPT3 和 DALL-E 这样的大型学习模型就像是「外星物种」一样,我们要尝试解码它们的行为。

对于人工智能来说,这无疑是一个奇怪的转折点。自出现以来,人工智能一直是介于工程学(特定功能的系统)和科学(发现自然现象规律)之间的「无人区」地带。人工智能的科学部分源于其最初的主张,即对人类智能本质的洞察;而工程部分则源于对智能功能(让计算机展示智能行为)的关注,而不是对人类智能的洞察。

而目前的情况正在迅速变化,特别是人工智能已成为大型学习模型的同义词。当前的现状是,人们对于训练过的模型是如何拥有特定功能一无所知,甚至它们可能具有的其它功能一无所知(如 PALM 所谓的「解释笑话」的能力)。即使是它们的创造者,通常也对这些系统能做的事情始料不及。探索这些系统以了解其「功能」范围,已成为近来人工智能研究的趋势。

越来越清楚的是,部分人工智能正偏离其工程本源。如今很难将大型学习系统看作传统意义上有特定目标的工程设计。毕竟人们不能说自己的孩子是「设计」出来的。工程学领域通常不会为设计的系统出现意料之外的新特性而庆祝(就如同土木工程师不会因为他们设计的抵御五级飓风的桥梁被发现还能悬浮而激动兴奋的庆祝)。

越来越多地证据表明,这些经过训练(但未经设计)的大型系统的研究注定要成为自然科学:观察系统的功能;做消融研究;对最佳实践进行定性的分析。

考虑到目前研究表象而非内里的事实,这类似于生物学中想在没有实际证据的情况下达到「弄清楚」的宏伟目标。机器学习属于研究工作,更多地关注系统为什么会做它正在做的事情(可以想象成对大型学习系统做「核磁共振成像」研究),而不是证明设计系统就是为了这样做。这些研究收获的知识能提升微调系统的能力(就像医学一样)。当然表象的研究允许比内里设置进行更具针对性的干预。

人工智能变成自然科学,也会对整个计算机科学产生影响,考虑到人工智能会对几乎所有计算领域都产生巨大影响。计算机科学的「科学」二字也受到过质疑和讽刺。但现在情况已有改变,因为人工智能已经成为研究大型人工学习系统的自然科学。当然,这一转变可能存在很大的阻力和意见,因为计算机科学长期以来一直是「建构修正的方法 (correct by construction)」圣杯,从最开始计算机科学就相当于生活在充满激励的系统中,它像训练有素的狗不犯错,就像人类一样正确。

早在 2003 年,图灵奖得主 Leslie Lamport 对计算未来属于生物学而非逻辑的可能性敲响警钟,称计算机科学将让我们生活在顺势疗法和信仰疗愈的世界。当时他的焦虑主要是针对人类通过编程完成的复杂软件系统,而不是现在更神秘的大型学习模型。

当从一个主要关注有意设计和「通过构造保证正确」的领域,转向试图探索或理解现有的(未经设计的)人工产物,它将带来的方法学转变值得思考。与生物学研究野外生物不同,人工智能研究人类创造的缺乏「设计感」的人工产物,对于创造和部署那些不被理解的人工产物,伦理问题是肯定会出现的。大型学习模型不太可能保证支持可证明的能力,无论是关于准确性、透明度还是公平性,然而这些是部署和实践这些系统的关键问题。虽然人类也无法提供关于其自身决定和行为正确性的证据,但确实有法律制度来让人类遵守惩罚,如罚款、谴责甚至监禁。而对于大型学习系统,有什么是等价的制度?

计算研究的美学也会发生改变。目前的研究者可以用论文中包含定理与定义的比例来评价论文。但随着计算机科学的目标,越来越像生物学等自然科学的目标,就需要开发新的计算美学方法论(因为零定理与零定义比例不会有很大的区别)。有迹象表明,计算复杂性分析在人工智能研究中已处于次要地位。​

以上是大模型铺天盖地出现后,计算机科学终成「自然科学」的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles