目录
生成算法
VAE
生成对抗的网络
生成器模型
鉴别器模型
基于流的模型
标准化流模型
自回归流的模型
总结
首页 科技周边 人工智能 生成模型VAE、GAN和基于流的模型详细对比

生成模型VAE、GAN和基于流的模型详细对比

Apr 12, 2023 pm 06:40 PM
人工智能 机器学习 ml

在Ian Goodfellow和其他研究人员在一篇论文中介绍生成对抗网络两年后,Yann LeCun称对抗训练是“过去十年里ML最有趣的想法”。尽管GANs很有趣,也很有前途,但它只是生成模型家族的一部分,是从完全不同的角度解决传统AI问题,在本文中我们将对比常见的三种生成模型。

生成算法

当我们想到机器学习时,首先想到的可能是鉴别算法。判别模型是根据输入数据的特征对其标签或类别进行预测,是所有分类和预测解决方案的核心。与这些模型相比生成算法帮助我们讲述关于数据的故事并提供数据是如何生成的可能解释,与判别算法所做的将特征映射到标签不同,生成模型试图预测给定标签的特征。

区别模型定义的标签y和特征x之间的关系,生成模型回答“你如何得到y”的问题。而生成模型模型则是P(Observation/Cause),然后使用贝叶斯定理计算P(Cause/Observation)。通过这种方式,他们可以捕获p(x|y), x给定y的概率,或者给定标签或类别的特征的概率。所以实际上,生成算法也是可以用作分类器的,这可能是因为它们对各个类的分布进行了建模。

生成算法有很多,但属于深度生成模型类别的最流行的模型是变分自动编码器(VAE)、gan和基于流的模型。

VAE

变分自编码器(VAE)是一种生成模型,它“提供潜在空间中观察结果的概率描述”。简单地说,这意味着vae将潜在属性存储为概率分布。

变分自编码器(Kingma & Welling, 2014)或VAE的思想深深植根于变分贝叶斯和图形模型方法。

生成模型VAE、GAN和基于流的模型详细对比

标准的自动编码器包括2个相似的网络,一个编码器和一个解码器。编码器接受输入并将其转换为更小的表示形式,解码器可以使用该表示形式将其转换回原始输入。它们将输入转换到的潜在空间以及它们的编码向量所在的空间可能不是连续。这对于生成模型来说是一个问题,因为我们都希望从潜在空间中随机采样,或者从连续潜在空间中生成输入图像的变化。

而变分自编码器具有连续的潜在空间,这样可以使随机采样和插值更加方便。为了实现这一点,编码器的隐藏节点不输出编码向量,而是输出两个大小相同的向量:一个均值向量和一个标准差向量。每一个隐藏的节点都认为自己是高斯分布的。这里的均值和标准差向量的第i个元素对应第i个随机变量的均值和标准差值。我们从这个分布向量中采样,解码器从输入向量的概率分布中随机抽样。这个过程就是随机生成。这意味着即使对于相同的输入,当平均值和标准差保持不变时,实际的编码在每一次传递中都会有所不同。

生成模型VAE、GAN和基于流的模型详细对比

自编码器的损失是最小化重构损失(输出与输入的相似程度)和潜在损失(隐藏节点与正态分布的接近程度)。潜在损失越小,可以编码的信息就越少,这样重构损失就会增加,所以在潜在损失和重建损失之间是需要进行进行权衡的。当潜在损耗较小时,生成的图像与训练的的图像会过于相似,效果较差。在重构损失小的情况下,训练时的重构图像效果较好,但生成的新图像与重构图像相差较大,所以需要找到一个好的平衡。

VAE可以处理各种类型的数据,序列的和非序列的,连续的或离散的,甚至有标签的或无标签的,这使它们成为非常强大的生成工具。

但是VAE的一个主要缺点是它们生成的输出模糊。正如Dosovitskiy和Brox所指出的,VAE模型往往产生不现实的、模糊的样本。这是由数据分布恢复和损失函数计算的方式造成的。Zhao等人在2017年的一篇论文中建议修改VAEs,不使用变分贝叶斯方法来提高输出质量。

生成模型VAE、GAN和基于流的模型详细对比

生成对抗的网络

生成对抗网络(GANs)是一种基于深度学习的生成模型,能够生成新内容。GAN架构在2014年Ian Goodfellow等人题为“生成对抗网络”的论文中首次被描述。

GANs采用监督学习方法,使用两个子模型:生成新示例的生成器模型和试图将示例分类为真实或假(生成的)的鉴别器模型。

生成器:用于从问题域生成新的似是而非例子的模型。

鉴频器:用于将示例分类为真实的(来自领域)或假的(生成的)的模型。

这两个模型作为竞争对手进行训练。生成器直接产生样本数据。它的对手鉴别器,试图区分从训练数据中提取的样本和从生成器中提取的样本。这个竞争过程在训练中持续进行,直到鉴别器模型有一半以上的时间无法判断真假,这意味着生成器模型正在生成非常逼真的数据。

生成模型VAE、GAN和基于流的模型详细对比

当鉴别器成功地鉴别出真假样本时,它会得到奖励它的参数保持不变。如果生成器判断错误则受到惩罚,更新其参数。在理想情况下,每当鉴别器不能分辨出差异并预测“不确定”(例如,50%的真假)时,生成器则能从输入域生成完美的副本。

但是这里每个模型都可以压倒另一个。如果鉴别器太好,它将返回非常接近0或1的值,生成器则难以获得更新的梯度。如果生成器太好,它就会利用鉴别器的弱点导致漏报。所以这两个神经网络必须具有通过各自的学习速率达到的相似的“技能水平”,这也是我们常说的GAN难以训练的原因之一。

生成器模型

生成器取一个固定长度的随机向量作为输入,在定义域内生成一个样本。这个向量是从高斯分布中随机抽取的。经过训练后,这个多维向量空间中的点将对应于问题域中的点,形成数据分布的压缩表示,这一步类似于VAE,这个向量空间被称为潜在空间,或由潜在变量组成的向量空间。GAN的生成器将平均选定的潜在空间中的点。从潜在空间中提取的新点可以作为输入提供给生成器模型,并用于生成新的和不同的输出示例。训练结束后,保留生成器模型,用于生成新的样本。

鉴别器模型

鉴别器模型将一个示例作为输入(来自训练数据集的真实样本或由生成器模型生成),并预测一个二进制类标签为real或fake(已生成)。鉴别器是一个正常的(并且很容易理解的)分类模型。

训练过程结束后,鉴别器被丢弃,因为我们感兴趣的是生成器。当然鉴别器也可用于其他目的使用

GANs可以产生可行的样本但最初版GAN也有缺点:

  • 图像是由一些任意的噪声产生的。当生成具有特定特征的生成模型VAE、GAN和基于流的模型详细对比时,不能确定什么初始噪声值将生成该生成模型VAE、GAN和基于流的模型详细对比,而是需要搜索整个分布。
  • GAN只区别于“真实”和“虚假”图像。但是没有约束说“猫”的照片必须看起来像“猫”。因此,它可能导致生成的图像中没有实际的对象,但样式看起来却很相似。
  • GANs需要很长时间来训练。一个GAN在单个GPU上可能需要几个小时,而单个CPU可能需要一天以上的时间。

基于流的模型

基于流的生成模型是精确的对数似然模型,有易处理的采样和潜在变量推理。基于流的模型将一堆可逆变换应用于来自先验的样本,以便可以计算观察的精确对数似然。与前两种算法不同,该模型显式地学习数据分布,因此损失函数是负对数似然。

生成模型VAE、GAN和基于流的模型详细对比

在非线性独立分量分析中,流模型f被构造为一个将高维随机变量x映射到标准高斯潜变量z=f(x)的可逆变换。流模型设计的关键思想是它可以是任意的双射函数,并且可以通过叠加各个简单的可逆变换来形成。总结来说:流模型f是由组成一系列的可逆流动作为f(x) =f1◦···◦fL(x),与每个fi有一个可处理的逆和可处理的雅可比矩阵行列式。

基于流的模型有两大类:带有标准化流模型和带有试图增强基本模型性能的自回归流的模型。

标准化流模型

对于许多机器学习问题来说,能够进行良好的密度估计是必不可少的。但是它在本质上是复杂的:当我们需要在深度学习模型中进行反向传播时,嵌入的概率分布需要足够简单,这样才可以有效地计算导数。传统的解决方案是在潜变量生成模型中使用高斯分布,尽管大多数现实世界的分布要复杂得多。标准化流(NF)模型,如RealNVP或Glow,提供了一个健壮的分布近似。他们通过应用一系列可逆变换函数将一个简单的分布转化为一个复杂的分布。通过一系列的变换,根据变量变换定理,可以反复地用新变量替换原变量,最后得到最终目标变量的概率分布。

自回归流的模型

当标准化流中的流动变换被框定为一个自回归模型,其中向量变量中的每个维度都处于先前维度的条件下,流模型的这种变化称为自回归流。与具有标准化流程的模型相比,它向前迈进了一步。

常用的自回归流模型是用于图像生成的PixelCNN和用于一维音频信号的WaveNet。它们都由一堆因果卷积组成——卷积运算考虑到顺序:在特定时间戳的预测只使用过去观察到的数据。在PixelCNN中,因果卷积由一个带掩码的积核执行。而WaveNet将输出通过几个时间戳转移到未来时间。

生成模型VAE、GAN和基于流的模型详细对比

基于流的模型在概念上对复杂分布的建模是非常友好的,但与最先进的自回归模型相比,它受到密度估计性能问题的限制。尽管流模型最初可能会替代GANs产生良好的输出,但它们之间的训练计算成本存在显著差距,基于流的模型生成相同分辨率的图像所需时间是GANs的几倍。

总结

每一种算法在准确性和效率方面都有其优点和局限性。虽然GANs和基于流程的模型通常生成比VAE更好或更接近真实的图像,但后者比基于流程的模型更具有更快时间和更好的参数效率,下面就是三个模型的对比总结:

生成模型VAE、GAN和基于流的模型详细对比

可以看到GAN因为并行所以它的效率很高,但它并不可逆。相反,流模型是可逆的但是效率却不高,而vae是可逆并且高效的,但不能并行计算。我们可以根据这些特性,在实际使用时根据产出、训练过程和效率之间进行权衡选择。

以上是生成模型VAE、GAN和基于流的模型详细对比的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles