目录
作者信息
首页 科技周边 人工智能 开源模型、单卡训练,带你了解爆火的文本指导音频生成技术AudioLDM

开源模型、单卡训练,带你了解爆火的文本指导音频生成技术AudioLDM

Apr 12, 2023 pm 07:04 PM
模型 开源

给出一段文字,人工智能就可以生成音乐,语音,各种音效,甚至是想象的声音,比如黑洞和激光枪。最近由英国萨里大学和帝国理工学院联合推出的AudioLDM,在发布之后迅速火遍国外,一周内在推特上收获了近 300 次的转发和 1500 次的点赞。在模型开源第二天,AudioLDM就冲上了 Hugging Face 热搜榜第一名,并在一周内进入了 Hugging Face 最受喜欢的前 40 名应用榜单(共约 25000),也迅速出现了很多基于 AudioLDM 的衍生工作。

AudioLDM 模型有如下几个亮点:

  • 首个同时可以从文本生成音乐,语音和音效的开源模型。
  • 由学术界开发,用更少的数据,单个 GPU,以及更小的模型,实现了目前最好的效果。
  • 提出用自监督的方式训练生成模型,使文本指导音频生成不再受限于(文本-音频)数据对缺失的问题。
  • 模型在不做额外训练的情况下(zero-shot),可以实现音频风格的迁移,音频缺失填充,和音频超分辨率。

图片

  • 项目主页:https://audioldm.github.io/ 
  • 论文:https://arxiv.org/abs/2301.12503
  • 开源代码和模型:https://github.com/haoheliu/AudioLDM
  • Hugging Face Space:https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation

作者首先在一月二十七日发布了对模型的预告,展示了非常简单的一个文本:”A music made by []” (一段由【】生成的音乐) 去生成不同声音的效果。视频展示了由不同乐器,甚至是蚊子制作的音乐,在推特上迅速受到了广泛关注,播放次数超过 35.4K 次,被转发了 130 余次。

图片

随后作者公开了论文和一个新的视频。这个视频中作者展示了模型的大部分能力,以及和 ChatGPT 合作去生成声音的效果。AudioLDM 甚至可以生成外太空的声音。

随后作者发布了论文,预训练的模型,和一个可玩的接口,点燃了推特网友们的热情,在第二天就迅速登上了 Hugging Face 热搜榜的第一名:

图片

推特上这篇工作受到了广泛的关注,业内学者们纷纷转发和评价:

图片

网友们使用 AudioLDM 生成了各种各样的声音。

比如有生成二次元猫娘打呼噜的声音:

图片

以及鬼魂的声音:

图片

还有网友合成出了:“木乃伊的声音,低频,有一些痛苦的呻吟声”。

甚至还有网友合成出了:“有旋律的放屁声”。

不得不感叹网友们想象力之丰富。

还有网友直接用 AudioLDM 生成了一系列的音乐专辑,有各种不同的风格,包括爵士,放克,电子和古典等类型。一些音乐颇有创造性。

比如 “以宇宙和月球为主题创作一个氛围音乐”: 

图片

以及 “使用未来的声音创作一个音乐”:

图片

感兴趣的读者可以访问这个音乐专辑网站:https://www.latent.store/albums

也有网友发挥想象力,结合图片生成文字的模型和 AudioLDM,制作了一个图片指导音效生成的应用。

比如说如果给 AudioLDM 这样的文本:”A dog running in the water with a frisbee” (一个在水中奔跑并叼着飞盘的狗狗):

图片

可以生成如下狗狗拍打水面的声音。

甚至可以还原老照片中的声音,比如下边这个图片:

图片

在获得 “A man and a woman sitting at a bar”(一个男人和一个女人坐在酒吧中)的文本后,模型可以生成如下的声音,可以听到模糊的说话声,以及背景酒杯碰撞的声音。

还有网友用 AudioLDM 生成了火焰狗狗的声音,非常有趣。

作者还制作了一个视频来展示模型在音效上的生成能力,展示了 AudioLDM 生成样本接近音效库的效果。

事实上文本生成音频只是 AudioLDM 的能力的一部分,AudioLDM 同样可以实现音色转换、缺失填补和超分辨率。

下边这两张图展示了(1)打击乐到氛围音乐;以及(2)小号到小朋友的歌声的音色转换。

图片

图片

下边是打击乐到氛围音乐(渐进的转换强度)的效果。

小号的声音转化为小朋友唱歌的声音(渐进的转换强度)的效果。

下边我们将会展示模型在音频超分辨率,音频缺失填充和发声材料控制上的效果。由于文章篇幅有限,音频主要用频谱图的方式展示,感兴趣的读者请前往 AudioLDM 的项目主页查看:https://audioldm.github.io/ 

在音频超分上,AudioLDM 的效果也是非常优秀,相比之前的超分辨率模型,AudioLDM 是通用的超分辨率模型,不仅限于处理音乐和语音。

图片

在音频缺失填充上,AudioLDM 可以根据给定文本的不同填入不同的音频内容,并且在边界处过渡比较自然。

此外,AudioLDM 还展现出了很强的控制能力,例如对声学环境,音乐的情绪和速度,物体材料,音调高低以及先后顺序等都有很强的控制能力,感兴趣的读者可以到 AudioLDM 的论文或项目主页查看。

作者在文章中对 AudioLDM 模型做了主观打分和客观指标的评测,结果显示都可以明显超过之前最优的模型:

图片

其中 AudioGen 为 Facebook 在 2022 年十月提出的模型,使用了十个数据集,64 块 GPU 和 285 兆的参数量。与之相比,AudioLDM-S 可以用单独一个数据集,1 块 GPU 和 181 兆的参数量达到更好的效果。

图片

主观打分也可以看出 AudioLDM 明显优于之前的方案 DiffSound。那么,AudioLDM 究竟做了哪些改进使得模型有如此优秀的性能呢?

首先,为了解决文本 - 音频数据对数量太少的问题,作者提出了自监督的方式去训练 AudioLDM。

图片

具体来说,在训练核心模块 LDMs 的时候,作者使用音频自身的 embedding 去作为 LDMs 的 condition 信号,整个流程并不涉及文本的使用(如上图所示)。这种方案基于一对预训练好的音频 - 文本对比学习编码器(CLAP),在 CLAP 原文中 CLAP 展示了很好的泛化能力。AudioLDM 利用了 CLAP 优秀的泛化能力,达到了在不需要文本标签情况下在大规模音频数据上的模型训练。

事实上,作者发现单使用音频训练甚至能比使用音频 - 文本数据对更好:

图片

作者分析了两方面原因:(1)文本标注本身难以包括音频的所有信息,比如声学环境,频率分布等,从而导致文本的 embedding 不能很好表征音频,(2)文本本身的质量并不完美,例如这样的一个标注 “Boats: Battleships-5.25 conveyor space”,这种标注即使人类也很难想象具体是什么声音,就会导致模型训练的问题。相比之下,使用音频自身做 LDM 的 condition 可以保证目标音频和 condition 的强关联性,从而达到更好的生成效果。

除此之外,作者采用的 Latent Diffusion 方案使得 Diffusion 模型可以在一个较小的空间中进行计算,从而大大的减少了模型对算力的要求。

在模型训练和结构上的许多细节探索也帮助 AudioLDM 获得了优秀的性能。

作者还画了一个简单的结构图来介绍了两种主要的下游任务:

图片

作者还在不同的模型结构,模型大小,DDIM 采样步数以及不同 Classifier-free Guidance Scale 做了详尽的实验。

在公开模型的同时,作者还公开了他们的生成模型评价体系的代码库,以统一今后学术界在这类问题上的评价方法,从而方便论文之间的比较,代码在如下链接中:https://github.com/haoheliu/audioldm_eval

在这项技术爆火的同时,也有网友对技术的安全性提出了质疑:

图片

图片

作者的团队表示会对模型的使用尤其是商用加以限制,保证模型仅被用来学术交流,并使用合适的 LICENSE 和水印保护,防止 Ethic 方面问题的出现。

作者信息

论文有两位共同一作:刘濠赫(英国萨里大学)和陈泽华(英国帝国理工学院)。

图片

刘濠赫目前博士就读于英国萨里大学,师从 Mark D. Plumbley 教授。其开源项目在 GitHub 上收获了上千star。在各大学术会议上发表论文二十余篇,并在多项世界机器声学大赛中获得前三的名次。在企业界与微软,字节跳动,英国广播公司等有广泛的合作,个人主页: https://www.surrey.ac.uk/people/haohe-liu

图片

陈泽华是英国帝国理工学院在读博士生,师从 Danilo Mandic 教授,曾在微软语音合成研究组及京东人工智能实验室实习,研究兴趣涉及生成模型、语音合成、生物电信号生成。

以上是开源模型、单卡训练,带你了解爆火的文本指导音频生成技术AudioLDM的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

推荐:优秀JS开源人脸检测识别项目 推荐:优秀JS开源人脸检测识别项目 Apr 03, 2024 am 11:55 AM

人脸检测识别技术已经是一个比较成熟且应用广泛的技术。而目前最为广泛的互联网应用语言非JS莫属,在Web前端实现人脸检测识别相比后端的人脸识别有优势也有弱势。优势包括减少网络交互、实时识别,大大缩短了用户等待时间,提高了用户体验;弱势是:受到模型大小限制,其中准确率也有限。如何在web端使用js实现人脸检测呢?为了实现Web端人脸识别,需要熟悉相关的编程语言和技术,如JavaScript、HTML、CSS、WebRTC等。同时还需要掌握相关的计算机视觉和人工智能技术。值得注意的是,由于Web端的计

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

See all articles