目录
用例1:捕获和分析非结构化数据 
用例2:在医疗保健供应链中利用人工智能和机器学习
用例3:利用高级分析进行诊断和治疗
克服道德困境 
人工智能在医疗保健领域的未来发展 
首页 科技周边 人工智能 人工智能如何帮助改善患者治疗和护理体验?

人工智能如何帮助改善患者治疗和护理体验?

Apr 12, 2023 pm 09:07 PM
人工智能 医疗


由于人口老龄化和远程医疗等医疗服务方法的兴起,医疗机构生成的非结构化和结构化数据的数量显著增加。本文将通过对各种用例的探索,展示医疗机构如何利用人工智能、机器学习和数据分析来利用越来越多的可用数据,改善患者治疗和护理体验,并提高运营效率。 

人工智能如何帮助改善患者治疗和护理体验?

用例1:捕获和分析非结构化数据 

医疗机构的非结构化数据是指从临床医生手写处方表到患者呼叫中心日志的任何内容。这些信息的数量正在增加,需要新的方法来捕获和分析这些数据。 

在这方面,Avanade公司全球数据和人工智能卓越中心高级总监Tripti Sethi提供了一个使用Answer ALS研究项目完成的工作示例。该示例是医疗机构希望利用大数据和人工智能来寻找答案和治疗方法,其目标是利用云计算、机器学习、大量患者数据和强大的交互式数据基础设施,以帮助确定导致肌萎缩侧索硬化(ALS)的原因并确定潜在的治疗方法。 

Answer ALS是由美国约翰斯·霍普金斯大学和罗伯特·帕卡德ALS研究中心与Avanade共同创立和运营的一项革命性研究项目,有1000多名ALS患者参与了该项目的研究。该项目汇集了全球研究中心、行业领先的科技公司以及世界一流的研究人员。这种全球合作产生的大量非结构化数据带来了挑战。

研究人员如何有效地利用这些数据并获得洞察力?Tripti解释称:“我们利用具有机器学习的强大基础设施的云计算模型创建类似于基于Azure的数据查询引擎的东西,能够在几小时(而不是过去的几天和几周)处理研究查询。同时研究人员能够更快地分析更多数据,以此作为基础加快为ALS患者制定成功的治疗方案。” 

用例2:在医疗保健供应链中利用人工智能和机器学习

在提高患者治疗和护理方面,人工智能和机器学习在医疗保健的未来发挥着重要作用。  这些先进的分析方法还可用于帮助医疗机构提高效率,并解决供应链挑战等问题,特别是在新冠疫情加剧供应链困难的时期。 

Sethi公司是一家大型药品批发商,其与Avanade合作改善了他们容易出错且不可靠的库存跟踪方法。此前,诸如RFID和蓝牙技术这样的常见跟踪技术作为重量计算传感器使用,既不可靠又麻烦,导致Sethi公司的利润率下降。

为了解决这一挑战,合作团队将人工智能(特别是计算机视觉和后处理机器学习模型)与连接的摄像头结合起来,使计算机节点边缘化,摄像头可以就近实时地连续监测和跟踪库存变化,助力药品批发商提高利润率并提高其计费准确性。

用例3:利用高级分析进行诊断和治疗

与人工智能和机器学习的重要性类似,高级分析将在未来的医疗保健中发挥重要作用,特别是在治疗发现方面,比如可以提高癌症病例审查的准确性,从而加速了诊断和治疗。 

比如,一旦癌症患者被诊断出来,就需要制定最佳的治疗方案,这要求来自不同专业的医生对癌症病例开展审查和讨论,但让一群医生在聚集在一起并不总是那么容易。为了帮助应对这一挑战,可以启用助力员工培训的新的协作解决方案,并使用数据分析为医生和护士提供见解,以便他们更好地参与,将自己的见解输入到治疗发现中。”

Sethi说,“增加这些多样化的知识有助于确保患者获得最高质量的治疗和护理,并且医院还可以加快诊断和治疗时间,从而提高满意度。”通过这些用例,每天的工作都在改善治疗和护理体验,并且通常是在患者不知情的情况下进行的,不会对患者治疗和护理造成任何干扰。 

克服道德困境 

人工智能驱动的算法通过观察数据并从中学习来做出预测或产生见解。如果该数据有偏差,其结果也将发生偏差。克服这种道德困境和偏见需要积累更多样化的数据集,同时还需要训练人工智能或机器学习算法来分析所有数据片段。 

Sethi称,可以训练模型查看所有表示的数据段,并提高数据中代表性较低的群体的重要性。分析人员可以抽取培训样本,重新衡量培训样本的重要性,放大少数群体的‘声音’。”对于医生来说,创建可解释且透明的算法也很重要,他们将能够理解为什么基于某些数据集生成某些见解。

Sethi认为,这引发了一个更广泛的问题——医疗机构为何使用人工智能和机器学习? “我们会接受预测的结果吗?或者我们是否从这些见解中学习并确定不同人群中医疗保健挑战的根本原因?”

作为道德行动的一个例子,Avanade公司旨在解决道德或负责任的技术困境,创建了数字道德框架,并将其应用于人工智能。该框架创建了一个负责任的人工智能清单,无论是关注数据完整性、隐私、偏见还是人类影响。

人工智能在医疗保健领域的未来发展 

随着人工智能加速进入越来越虚拟的运营环境,将在医疗保健领域发挥关键作用。 

新冠疫情加速了向虚拟医疗的转变,这导致了数据爆炸式增长。但是,为了跟上这种增长,还可以做更多的工作来收集见解,并利用人工智能、机器学习和数据分析推动有意义的变革。

总之,人工智能和大数据分析为更好地治疗患者、提高效率以及更准确的治疗发现提供了很多机会,我们需要利用这些先进技术,同时不要忘记道德、隐私和合规性的重要性。

以上是人工智能如何帮助改善患者治疗和护理体验?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

<🎜>:泡泡胶模拟器无穷大 - 如何获取和使用皇家钥匙
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆树的耳语 - 如何解锁抓钩
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系统,解释
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1668
14
CakePHP 教程
1426
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

See all articles