美国专利商标局:采用以人为本的人工智能创新方法
与很多洞察驱动型组织一样,美国专利商标局(USPTO)利用数据分析、人工智能和机器学习等技术来提高自身的运营效率和绩效,以及改善系统和流程的质量。
人工智能和机器学习算法对于美国专利商标局的工作是至关重要的,但同时,这家政府机构的指导原则是在开发和使用这些技术以改进和扩展各项计划的时候,采用一种以人为本的方法。美国专利商标局首席信息官Jamie Holcombe指出,人工智能和机器学习工具有助于增强人类专家的工作能力并增强他们在工作中的独创性,在这一点上,这种工具与人类思维的细微差别或者推理能力是无法匹敌。
美国专利商标局首席信息官 Jamie Holcombe
为了进一步补充完善该技术,美国专利商标局通过被动和主动捕获的方式,借助来自数千名经验丰富的员工的输入,训练和改进人工智能驱动的模型,以确保技术实现预期的结果。美国专利商标局自成立以来已经授予了超过1100万项专利,拥有超过12000名员工,其中包括工程师、律师、分析师和计算机专家。不仅如此,来自前线专利审查员的持续反馈也被用于改进人工智能/机器学习模型,以推动新产品的开发并支持两个关键领域的活动:专利搜索和分类。
Holcombe指出,鉴于当前数据量的爆炸式增长和“现有技术”的潜在来源,进行全面的专利检索可能是颇具挑战性的。为了应对这一挑战,美国专利商标局的技术团队正在一种新的专利搜索工具中采用人工智能技术,帮助审查员在审查申请的时候,找到他们所需的最相关来源。这一点很重要,因为美国专利商标局每年会收到超过60万份申请,平均每一份申请包含大约20页的文本和图片,或者有大约10000个描述性单词。美国专利商标局的IT部门还开发并部署了一个分类工具,可以从超过25万个可能的类别中识别和匹配与该项发明相关的分类符号。
在这两种情况下,模型都是由人类专家开发并且通过这些专家提供的反馈进行持续增强的,这些专家通过人为操作来判断某事物是全新的还是新颖的,然后运用法律、事实和专业知识来做出决定。
在信息流中探索人才渠道
从审查员专家和其他人那里获得源源不断的反馈,这可能是一种优势,但并不是美国专利商标局为了确定创新和全球专业知识的新渠道、帮助解决重要挑战和扩展人工智能所采取的唯一途径。今年早些时候,美国专利商标局求助于人工智能研究社区和Google Kaggle。Kaggle是一个为数据科学家和其他人交流思想和想法搭建的技术和社交平台,每年3月Kaggle会举行全球性的全球编码竞赛,提供2.5万美元的奖金,呼吁人工智能研究人员和数据科学家编写代码来评估短语的语义相似性。
今年这项比赛在6月30日结束之前收到了42900份参赛作品,涉及1800多个全球团队共同致力于利用公开可用的专利数据源。Holcombe解释说,比赛的目标是为了推动借助AI帮助机构和专利社区更好地理解专利语言。他说:“结果不仅是为专利搜索提供更好的短语算法,而且还让获胜的模型被公共领域所采用。”
美国专利商标局还利用了其他的公共信息资源,例如Golden,这是2019年推出的一个免费“维基风”人工智能/机器学习驱动型平台,可以通过网络搜索将主题与相关数据和可用数据进行匹配,并将其整合成一个信息流,背后运行的AI算法启动之后可以持续添加相关的数据,任何人都可以搜索有关公司、公司专利和资金来源(如风险投资)的信息。
人工智能/人类联盟的A、B、C指南
虽然我们看到有非常多的技术专栏都是关于技术融合的,但鉴于人性的多样性和复杂性,采用“以人为本”的方法来开发人人工智能和机器学习可能是颇具挑战性的。因此,美国专利商标局在Holcombe的带领下,制定了从试点到原型、再到生产的指南,概括成A、B、C指南:
- A 代表一致性:Holcombe认为,业务人员和IT人员之间必须有紧密的联系。“最好的跨职能团队由和业务代表并肩工作的技术人员组成,所有人都身处于一个能够促进计划、执行、检查和调整的敏捷环境中。”敏捷和DevSecOps实践依赖于快速行动、透明度和产品思维,为了最大限度地取得进展,领导者要尽早地、经常地与他们的团队和利益相关者进行沟通。
- B 代表业务价值:你可以从对于核心战略运营具有明显价值的业务案例开始着手,这些案例可以解决那些让人工智能和机器学习派上用场的挑战。Holcombe指出:“作为一家100%收费的机构,我们在严格的业务和投资回报率下应对技术挑战。”
- C 代表客户(也就是员工):人工智能/机器学习解决方案旨在为审查员和其他领域专家提供助力,而不是要取代他们。因此,新兴技术团队会在任何发布之前、之中和之后与内部客户一起进行测试和调整。这些产品使用者可以帮助推动人工智能创新,其中一些使用者很“注重细节”,并且和CIO都是C级高管,提供的意见很重要。Holcombe指出:“由于我们尽早地把客户引入了流程中,所以我们获得了很有力的反馈,这有助于推动技术的采用。而且,客户能够让我们在部署对机构专家和公众负责任的人工智能时候保持坦诚。”
以上是美国专利商标局:采用以人为本的人工智能创新方法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
