为什么人工智能设计必须优先考虑数据隐私
- 人工智能是医疗保健、技术和其他领域发展不可或缺的一部分,但人们对如何监管数据隐私感到担忧。
- 数据隐私对于获得公众对技术进步的信任至关重要。
数据隐私通常与基于消费者数据的人工智能 (AI) 模型相关联。可以理解的是,用户对获取和使用其数据的自动化技术持谨慎态度,其中可能包括敏感信息。由于 AI
模型依赖于数据质量来提供显着的结果,因此它们的持续存在取决于隐私保护是其设计不可或缺的一部分。
良好的隐私和数据管理实践不仅仅是消除客户恐惧和担忧的一种方式,与企业的核心组织价值观、业务流程和安全管理有很大关系。隐私问题已被广泛研究和宣传,隐私感知调查数据表明,隐私保护是消费者关注的重要问题。
从上下文中解决这些问题至关重要,对于使用面向消费者的人工智能的公司来说,有几种方法和技术可以帮助解决通常与人工智能相关的隐私问题。
有些产品和服务需要数据,但它们不需要侵犯任何人的隐私
使用人工智能的企业在隐私方面已经面临公众的质疑。根据欧洲消费者组织 2020 年的一项调查显示,45-60% 的欧洲人同意 AI
将导致更多的个人数据滥用。
有许多流行的在线服务和产品依赖于大型数据集来学习和改进他们的 AI
算法。即使是最不注重隐私的用户,这些数据集中的一些数据也可能被认为是私有的。来自网络、社交媒体页面、手机和其他设备的数据流增加了企业用来训练机器学习系统的信息量。由于一些企业过度使用个人数据和管理不善,隐私保护正在成为世界各地的公共政策问题。
我们收集的大部分敏感数据都是为了改进支持人工智能的流程。许多分析的数据也是由机器学习采用驱动的,因为复杂的算法需要根据这些数据集实时做出决策。搜索算法、语音助手和推荐引擎只是利用基于现实世界用户数据的大型数据集的
AI 的少数解决方案。
海量数据库可能包含广泛的数据,最紧迫的问题之一是这些数据可能是个人可识别和敏感的。实际上,教算法做出决策并不依赖于知道数据与谁相关。因此,此类产品背后的公司应专注于将其数据集私有化,几乎没有方法来识别源数据中的用户,并制定措施从其算法中删除边缘情况以避免逆向工程和识别。
数据隐私和人工智能之间的关系非常微妙。虽然某些算法可能不可避免地需要私人数据,但有一些方法可以以更安全和非侵入性的方式使用它。以下方法只是使用私有数据的公司如何成为解决方案的一部分的一些方法。
考虑隐私的人工智能设计
我们已经讨论了逆向工程的问题,其中不良行为者会发现 AI
模型中的漏洞并从模型的输出中识别潜在的关键信息。逆向工程是为什么在面临这一挑战的情况下更改和改进数据库和学习数据对于 AI 使用至关重要。
例如,在机器学习过程(对抗性学习)中组合冲突的数据集是区分 AI
算法输出中的缺陷和偏差的好选择。也有使用不使用实际个人数据的合成数据集的选项,但它们的有效性仍然存在问题。
医疗保健是人工智能和数据隐私治理的先驱,尤其是处理敏感的私人数据。它还在同意方面做了大量工作,无论是对于医疗程序还是处理他们的数据——风险很高,并且已得到法律强制执行。
对于 AI 产品和算法的整体设计,通过匿名化和聚合的方式将数据与用户解耦是任何使用用户数据训练其 AI 模型的企业的关键。
有很多考虑可以加强 AI 公司的隐私保护:
- 以隐私为核心:将隐私保护放在开发者的雷达上,并找到有效加强安全性的方法。
- 匿名化和聚合数据集,删除所有个人标识符和唯一数据点。
- 严格控制公司中谁可以访问特定数据集,并持续审核这些数据的访问方式,因为这是过去一些数据泄露背后的原因。
- 更多的数据并不总是最好的解决方案。使用最少的数据测试您的算法,以了解您需要收集和处理的最少数据量,从而使您的用例可行。
- 必须提供一种简化的方法来根据用户的要求消除个人数据。只对用户数据进行伪匿名化的公司应该使用最新的数据不断地重新训练他们的模型。
- 利用强大的去标识化策略,例如,具有完全匿名化的聚合和合成数据集,用于算法训练、审计和质量保证等的不可逆标识符。
- 通过重新思考从第三方获取和使用关键信息的方式来保护用户的自主权和隐私——仔细检查数据源,只使用那些在用户明确和知情同意的情况下收集数据的源。
- 考虑风险:攻击是否可能从您的 AI 系统输出中危及用户隐私?
数据隐私和人工智能的未来是什么?
人工智能系统需要大量数据,如果没有用于训练人工智能算法的个人数据,一些顶级的在线服务和产品就无法运行。然而,有很多方法可以改进数据的获取、管理和使用,包括算法本身和整体数据管理。尊重隐私的人工智能需要尊重隐私的公司。
本文作者:Einaras von Gravrock,CUJO AI 首席执行官兼创始人
以上是为什么人工智能设计必须优先考虑数据隐私的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

上周,在内部的离职潮和外部的口诛笔伐之下,OpenAI可谓是内忧外患:-侵权寡姐引发全球热议-员工签署「霸王条款」被接连曝出-网友细数奥特曼「七宗罪」辟谣:根据Vox获取的泄露信息和文件,OpenAI的高级领导层,包括Altman在内,非常了解这些股权回收条款,并且签署了它们。除此之外,还有一个严峻而紧迫的问题摆在OpenAI面前——AI安全。最近,五名与安全相关的员工离职,其中包括两名最著名的员工,“超级对齐”团队的解散让OpenAI的安全问题再次被置于聚光灯下。《财富》杂志报道称,OpenA

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
