2022年深度学习的发展趋势与问题
我们将人工智能(AI)深度学习的又一年激动人心的发展抛在身后——这一年充满了显着的进步、争议,当然还有争议。在我们结束 2022 年并准备迎接 2023 年的到来之际,以下是今年深度学习领域最显着的总体趋势。
1. 规模仍然是一个重要因素
过去几年深度学习中一直保持不变的一个主题是创建更大的神经网络的驱动力。计算机资源的可用性使扩展神经网络以及专门的 AI 硬件、大型数据集以及变压器模型等规模友好架构的开发成为可能。
目前,公司正在通过将神经网络扩展到更大的规模来获得更好的结果。过去一年,DeepMind 发布了Gopher,一个 2800 亿参数的大型语言模型(LLM);谷歌发布了拥有 5400 亿个参数的Pathways 语言模型 ( PaLM )和多达 1.2 万亿个参数的通用语言模型 ( GLaM );微软和英伟达发布了Megatron-Turing NLG,一个 5300 亿参数的 LLM。
规模的有趣方面之一是涌现能力,其中较大的模型成功地完成了较小的模型不可能完成的任务。这种现象在 LLM 中特别有趣,随着规模的扩大,模型在更广泛的任务和基准测试中显示出有希望的结果。
然而,值得注意的是,即使在最大的模型中,深度学习的一些基本问题仍未解决(稍后会详细介绍)。
2. 无监督学习继续交付
许多成功的深度学习应用程序需要人类标记训练示例,也称为监督学习。但互联网上可用的大多数数据都没有带有监督学习所需的干净标签。数据注释既昂贵又缓慢,造成瓶颈。这就是为什么研究人员长期以来一直在寻求无监督学习的进步,在这种学习中,深度学习模型的训练不需要人工注释的数据。
近年来,这一领域取得了巨大的进步,尤其是在 LLM 领域,它们大多接受从互联网上收集的大量原始数据集的训练。虽然法学硕士在 2022 年继续取得进展,但我们也看到无监督学习技术的其他趋势越来越受欢迎。
例如,今年文本到图像的模型取得了惊人的进步。OpenAI 的DALL-E 2、谷歌的Imagen和 Stability AI 的Stable Diffusion等模型展示了无监督学习的力量。与需要注释良好的图像和描述对的旧文本到图像模型不同,这些模型使用互联网上已经存在的松散标题图像的大型数据集。他们的训练数据集的庞大规模(这仅是可能的,因为不需要手动标记)和字幕方案的可变性使这些模型能够找到文本和视觉信息之间的各种复杂模式。因此,它们在为各种描述生成图像方面更加灵活。
3. 多模态取得长足进步
文本到图像生成器还有另一个有趣的特性:它们在单个模型中组合了多种数据类型。能够处理多种模式使深度学习模型能够承担更复杂的任务。
多模态对于人类和动物的智能非常重要。例如,当你看到一棵树并听到风在它的树枝上沙沙作响时,你的大脑可以很快地将它们联系在一起。同样,当你看到“树”这个词时,你可以很快地联想到一棵树的形象,记住下雨后松树的味道,或者回忆起你以前有过的其他经历。
显然,多模态在使深度学习系统更加灵活方面发挥了重要作用。DeepMind 的Gato可能最好地展示了这一点,这是一种针对各种数据类型(包括图像、文本和本体感觉数据)进行训练的深度学习模型。Gato 在多项任务中表现出色,包括图像字幕、交互式对话、控制机械臂和玩游戏。这与旨在执行单一任务的经典深度学习模型形成对比。
一些研究人员已经提出了这样的概念,即我们只需要像 Gato 这样的系统来实现人工智能(AGI)。尽管许多科学家不同意这一观点,但可以肯定的是,多模态为深度学习带来了重要成就。
4. 深度学习的基本问题仍然存在
尽管深度学习取得了令人瞩目的成就,但该领域的一些问题仍未解决。其中包括因果关系、组合性、常识、推理、计划、直觉物理学以及抽象和类比。
这些是不同领域的科学家仍在研究的一些智力奥秘。纯粹的基于规模和数据的深度学习方法有助于在其中一些问题上取得渐进式进展,但未能提供明确的解决方案。
例如,较大的 LLM 可以在较长的文本中保持连贯性和一致性。但他们在需要细致的逐步推理和计划的任务上失败了。
同样,文本到图像生成器创建令人惊叹的图形,但在被要求绘制需要组合性或具有复杂描述的图像时会犯基本错误。
不同的科学家正在讨论和探索这些挑战,包括一些深度学习的先驱。其中最著名的是获得图灵奖的卷积神经网络 (CNN) 发明者 Yann LeCun,他最近写了一篇关于仅从文本中学习的 LLM的局限性的长文。LeCun 正在研究一种深度学习架构,该架构可以学习世界模型,并可以解决该领域目前面临的一些挑战。
深度学习已经走过了漫长的道路。但我们取得的进步越多,我们就越意识到创建真正智能系统的挑战。明年肯定会和今年一样令人兴奋。
以上是2022年深度学习的发展趋势与问题的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」 。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。 AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显着提高。这表明,在单个统一的深度学习框架内,可以实现

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
