撑不起未来愿景,人工智能将再一次迎来“凛冬”?
自1950年阿兰·图灵在其开创性论文——《计算机器与智能》中首次提出“机器能思考吗?”这个问题以来,人工智能的发展并非一帆风顺,也尚未实现其“通用人工智能”的目标。
然而,该领域仍然取得了令人难以置信的进步,例如:IBM深蓝机器人击败世界上最优秀的象棋手、自动驾驶汽车的诞生,以及谷歌DeepMind的AlphaGo击败世界最佳围棋手……目前的成就展示了过去超过65年来最优秀的研发成果。
值得关注的是,在这段时间存在有详细记录的“人工智能的冬天(AI Winters)”,几乎完全推翻了人们早期对人工智能的美好预期。
导致人工智能冬天的因素之一是炒作与实际的根本进步之间的差距。
过去几年来,有推测称另一个人工智能冬天可能正在来临,那么哪些因素可能引发人工智能的冰川期?
人工智能的周期性波动
“人工智能冬天(AI Winter)”指的是公众对人工智能的兴趣随着商业和学术领域对这些技术的投资逐渐减少的时期。
人工智能最初在20世纪50年代和60年代得到了快速发展。尽管在人工智能方面取得了许多进步,但它们大多还是以学术性为主。
20世纪70年代初,人们对人工智能的热情开始消退,这一灰暗时期持续到1980年左右。
在这段人工智能的寒冬中,致力于为机器开发类人智能的活动开始缺乏资金。
1956年夏天,一群数学家和计算机科学家占领了达特茅斯学院数学系所在大楼的顶层。
在八周的时间里,他们共同想象着一个全新的研究领域。
约翰-麦卡锡(John McCarthy)作为当时达特茅斯大学的一名年轻教授,他在为研讨会设计提案时杜撰了“人工智能”一词。
他认为,研讨会应该探索这样的假说:“人类学习的每一个方面或智能的任何其他特征原则上都可以被精确描述,以至于可以用机器来模拟它”。
在那次会议上,研究人员粗略地勾勒出了我们今天所熟知的人工智能。
它催生了第一个人工智能科学家阵营,“符号主义”是一种基于逻辑推理的智能模拟方法,又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统假设和有限合理性原理,长期以来一直在人工智能研究中处于主导地位。
他们的专家体系在20世纪80年代达到了顶峰。
会议后的几年里,“联结主义”把人的智能归结为人脑的高层活动,强调智能的产生是由大量简单的单元通过复杂的相互联结和并行运行的结果。
它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。
长期以来,这两种方法被认为是相互排斥的,双方都认为自己正在走向通用人工智能的路上。
回顾自那次会议以来的几十年,我们可以看到人工智能研究人员的希望经常破灭,而这些挫折并没有阻止他们发展人工智能。
今天,尽管人工智能正在给行业带来革命性的变化,并有可能颠覆全球劳动力市场,但许多专家仍在思考,今天的人工智能应用是否已经达到了极限。
正如查尔斯·崔(Charles Choi)在《人工智能失败的七种揭示性方式》(Seven Revealed Ways AI Fail)中所描述的那样,当今深度学习系统的弱点正变得越来越明显。
然而,研究人员并没有对人工智能的未来感到悲观。在不久的将来,我们可能会迎来另一个人工智能的冬天。
但这也许正是灵感迸发的人工智能工程师们最终引领我们进入机器思维永恒之夏的时刻。
计算机视觉与人工智能专家Filip Piekniewski一篇《AI凛冬将至》的文章在网上引起了热议。
该文主要对深度学习的炒作提出了批评,认为这项技术远算不上革命性,而且正面临发展瓶颈。
各大公司对人工智能的兴趣其实正在收敛,人工智能的又一次凛冬可能要来了。
人工智能凛冬会到来吗?
自1993年以来,人工智能领域取得了越来越令人瞩目的进步。
1997年,IBM公司的深蓝系统成为第一个打败世界象棋冠军加里﹒卡斯帕罗夫的计算机象棋选手。
2005年,一台斯坦福无人驾驶机器人未经“踩点儿”,便经一条沙漠道路自动驾驶131英里,赢得DARPA自动驾驶机器人挑战赛。
2016年初,谷歌旗下DeepMind的AlphaGo击败了世界最优秀的围棋选手。
在过去二十年里,一切都变了。
特别是互联网的蓬勃发展,让人工智能行业有足够多的图片、声音、视频等各类数据来训练神经网络并进行广泛应用。
但深度学习领域不断扩大的成功依赖于增加神经网络的层数,以及增加用于训练它们的GPU时间。
人工智能研究公司OpenAI的一项分析显示,训练最大的人工智能系统所需的计算能力每两年翻一番,之后的每3-4个月翻一番。
正如尼尔·汤普森(Neil C. Thompson)和他的同事在《深度学习的收益递减》一书中所写,许多研究人员担心,人工智能的计算需求正处于一个不可持续的轨道上。
早期人工智能研究面对的一个普遍问题是严重缺乏计算能力,它们受限于硬件,而不是人类智力或能力。
在过去25年里,随着计算能力显著提高,我们在人工智能方面取得的进步也齐头并进。
然而,面对汹涌而至的海量数据和不断复杂的算法,全球每年新增数据20ZB,AI算力需求每年增长10倍,这一速度已经远超摩尔定律关于性能翻倍的周期。
我们正在接近一个芯片上可以安装晶体管数量的理论上的物理极限。
比如英特尔正在放缓推出新芯片制造技术的步伐,因其难以在节约成本的情况下继续缩小晶体管体积。简而言之,摩尔定律的终点即将来临。
图片来源:Ray Kurzwell, DFJ
有一些短期解决方案将能确保计算能力的继续增长,从而促进人工智能的进步。
例如,在2017年中期,谷歌宣布,其已开发一款专门的人工智能芯片,名为“云TPU”,该芯片对深度神经网络的训练和执行进行了优化。
亚马逊为Alexa(人工智能私人助理)开发自已的芯片。同时,目前还有众多初创公司试图调整芯片设计,以适应专门的人工智能应用程序。
然而,这些仅是短期解决方案。
当我们用尽了能优化传统芯片设计的方案之后又会怎么样呢?我们会见到另一个人工智能冬天吗?答案是肯定的,除非量子计算能超越经典计算,并找到更为坚实的答案。
但直到目前,可实现“量子霸权”、比传统计算机更加高效的量子计算机还不存在。
如果我们在真正的“量子霸权”到来之前就达到了传统计算能力的极限,恐怕未来还会出现人工智能的又一个冬天。
人工智能研究人员正努力解决的问题日益复杂,并推动着我们去实现阿兰·图灵对人工通用人工智能的愿景。然而,仍存在大量工作要做。
同时,没有量子计算的帮助,我们将很能实现人工智能的全部潜力。
没有人能肯定地说,人工智能冬天是否即将到来。
但是,重要的是要意识到潜在的风险并密切关注迹象,以便我们可以在它确实发生时做好准备。
以上是撑不起未来愿景,人工智能将再一次迎来“凛冬”?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
