目录
如何使用
使用自有数据训练模型
举个例子
技术与训练过程
后续工作
首页 科技周边 人工智能 部署国产ChatGPT仅需6G显存!ChatYuan模型开放下载:业内首个功能型对话开源中文大模型

部署国产ChatGPT仅需6G显存!ChatYuan模型开放下载:业内首个功能型对话开源中文大模型

Apr 12, 2023 pm 11:13 PM
chatgpt 开源

前段时间,元语智能开发团队训练了一个类似ChatGPT的功能型对话大模型ChatYuan,并在网页版中开放了试玩接口。

现在你也可以在自己的机器上部署一个ChatYuan了!

图片

模型可用于问答场景,能够结合上下文做对话、做各种生成任务,包括创意性写作,也能回答法律、新冠等领域类问题。

并且在全中文任务中支持零样本学习,用户可以通过提供prompt的方式来使用,支持文本生成、信息抽取和理解大类下近30多种中文任务。

ChatYuan基于PromptCLUE-large结合数亿条功能问答和多轮对话数据进一步训练得到,模型参数量7.7亿,显存6G左右,一张民用显卡即可加载使用,目前模型已开放下载。

PromptCLUE在1000亿token中文语料上预训练,累计学习1.5万亿中文token,并且在数百种任务上进行Prompt任务式训练。

针对理解类任务,如分类、情感分析、抽取等,可以自定义标签体系;针对多种生成任务,可以进行采样自由生成。

如何使用

1. Github

图片

项目地址:https://github.com/clue-ai/ChatYuan

2. Huggingface

图片

项目地址:https://huggingface.co/ClueAI/ChatYuan-large-v1

图片

图片

3. ModelScope

图片

项目地址:https://modelscope.cn/models/ClueAI/ChatYuan-large

加载模型:

图片

使用模型进行预测推理方法:

图片

图片

4. PaddlePaddle

图片

项目地址:https://aistudio.baidu.com/aistudio/projectdetail/5404182

模型地址:https://huggingface.co/ClueAI/ChatYuan-large-v1-paddle

使用自有数据训练模型

1. 组织数据

将数据组织成统一的格式,由两部分构成:输入(Input)和输出(Output)。

针对单轮问答或生成:

输入(Input):任务描述+输入文本

输出(Output):系统需要预测的文本,如下图中「小元」后的内容。

针对多轮对话:

输入(Input):任务描述+上文+输入文本

输出(Output):系统需要预测的文本,如下图中「小元」后的内容。

单轮对话数据格式:

图片

多轮对话数据格式:

图片

2. 训练模型

训练代码可以参考:

使用pCLUE数据集进行训练、预测和效果验证, pytorch实现——在线colab。

图片

Github项目:https://colab.research.google.com/drive/1lEyFhEfoc-5Z5xqpEKkZt_iMaojH1MP_?usp=sharing

举个例子

==========示例1==========

用户:

你能干什么

小元:

您好!我是元语AI。我可以回答您的问题、写文章、写作业、翻译,对于一些法律等领域的问题我也可以给你提供信息。

==========示例2==========

用户:

写一个诗歌,关于冬天

小元:

冬夜寂静冷,

云在天边飘,

冰封白雪上,

寒冷像一场雪。

雪花融化成冰,

像那雪花飘洒,

在寒冷的冬天,

感受春天的喜悦。

冬日里,

风雪渐消,

一片寂静,

把快乐和温暖带回家。

==========示例3==========

用户:

学前教育专业岗位实习中,在学生方面会存在问题,请提出改进措施。800字

小元:

在学前教育专业岗位实习中,在学生方面会存在一些问题,如学生缺少专业知识、缺乏合作意识、缺乏基本的责任心等等,需要我们采取措施,来解决这些问题。

首先,在实习过程中,我们需要培养学生的团队意识,加强学生与老师之间的合作,加强与家长之间的沟通,提高他们的沟通能力。另外,我们也需要加强学生的独立性,让学生学会独立思考,学会和老师、家长进行沟通,培养其独立性。

此外,在日常的工作中,我们也要为学生提供适当的机会和机会,让学生多接触社会、多参加社会活动,加深他们对社会、学校的认识,培养他们主动、积极和创新的精神。

最后,我们还需要重视学生在实习中出现的问题,尤其是学生缺乏合作,有依赖心理,不懂得分享,有拖延行为等,这些学生应该引起我们的重视,制定合理的改进措施,改善这些问题。

技术与训练过程

ChatYuan是在PromptCLUE基础上进一步训练获得的模型。它去掉了文本理解、信息抽取类任务,加强了问答、对话和各种生成式任务的学习和训练;

针对多轮对话容易受到上下文的干扰,加入了抗干扰数据使得模型可以在必要时忽略无关的上下文;加入了用户反馈数据的学习,使得模型不仅具有一定的通用语言理解能力、特定任务上的生成能力,也能更好的响应用户的意图。

PromptCLUE的学习过程

图片

  1. 三大统一:统一模型框架(text-to-text),统一任务形式(prompt),统一应用方式(zero-shot/few-shot)(T0)
  2. 大规模预训练:在t5-large版基础上,使用数百G中文语料,训练了100万步,累积训练了1.5万亿个中文字词级别token
  3. 大规模任务数据:使用了16种任务类型,数百种任务,累积亿级别任务数据
  4. 混合预训练:一方面将下游任务作为预训练语料,另一方面将下游任务和预训练语料一起训练,减少任务灾难遗忘以及缩短预训练和下游任务的距离,更好的适应下游任务(ExT5)
  5. 混合采样:针对众多数据量差异极大的任务,采用在每个训练batch内对所有的任务进行按照比例采样,根据任务的数据量进行平滑采样,并且同时限制任务数据量采样池的上限。平滑采样可以减少任务训练有偏危害,在每一batch内训练可以减少异质任务之间训练负迁移的情况(T5)
  6. 分阶段训练:一方面指在预训练分阶段,涉及训练序列长度的分阶段(128和512),加快预训练速度(Bert);另一方面,在下游训练分阶段, 涉及学习率和序列长度的变化以及递减式对下游任务的数据量限制,更好的适应下游的不同任务。
  7. 增加语言模型的训练:参考t5.1.1, 除了使用Span Corrpution构建的方式进行无监督训练,同时在使用prefix LM的方式训练,增强生成任务的能力(LM adapted)
  8. 增加对模型的encoder以及decoder的训练:根据下游任务数据分别构建Data_text,Data_target预训练数据语料,加入到预训练中,分别增强模型的encoder理解能力和 decoder的生成能力(见UIE)
  9. 重新构建模型中文字典:使用sentencepiece上在千亿token上学习并构建模型字典,更加符合中文语言习惯

后续工作

目前版本可以进行问答、对话和各种创意性写作或文本生成,相对于线上的版本,它的意图理解和生成能力在一些场合还有比较大的提升空间;它也还不能较好实现推理或复杂的任务。之后,会根据反馈进一步改进现有版本。

以上是部署国产ChatGPT仅需6G显存!ChatYuan模型开放下载:业内首个功能型对话开源中文大模型的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

十个推荐开源免费文本标注工具 十个推荐开源免费文本标注工具 Mar 26, 2024 pm 08:20 PM

文本标注工作是将标签或标记与文本中特定内容相对应的工作。其主要目的是为文本提供额外的信息,以便进行更深入的分析和处理,尤其是在人工智能领域。文本标注对于人工智能应用中的监督机器学习任务至关重要。用于训练AI模型,有助更准确地理解自然语言文本信息,提高文本分类、情感分析和语言翻译等任务的性能。通过文本标注,我们可以教AI模型识别文本中的实体、理解上下文,并在出现新的类似数据时做出准确的预测。本文主要推荐一些较好的开源文本标注工具。1.LabelStudiohttps://github.com/Hu

ChatGPT 现在允许免费用户使用 DALL-E 3 生成每日限制的图像 ChatGPT 现在允许免费用户使用 DALL-E 3 生成每日限制的图像 Aug 09, 2024 pm 09:37 PM

DALL-E 3 于 2023 年 9 月正式推出,是比其前身大幅改进的型号。它被认为是迄今为止最好的人工智能图像生成器之一,能够创建具有复杂细节的图像。然而,在推出时,它不包括

15个值得推荐的开源免费图像标注工具 15个值得推荐的开源免费图像标注工具 Mar 28, 2024 pm 01:21 PM

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

推荐:优秀JS开源人脸检测识别项目 推荐:优秀JS开源人脸检测识别项目 Apr 03, 2024 am 11:55 AM

人脸检测识别技术已经是一个比较成熟且应用广泛的技术。而目前最为广泛的互联网应用语言非JS莫属,在Web前端实现人脸检测识别相比后端的人脸识别有优势也有弱势。优势包括减少网络交互、实时识别,大大缩短了用户等待时间,提高了用户体验;弱势是:受到模型大小限制,其中准确率也有限。如何在web端使用js实现人脸检测呢?为了实现Web端人脸识别,需要熟悉相关的编程语言和技术,如JavaScript、HTML、CSS、WebRTC等。同时还需要掌握相关的计算机视觉和人工智能技术。值得注意的是,由于Web端的计

阿里7B多模态文档理解大模型拿下新SOTA 阿里7B多模态文档理解大模型拿下新SOTA Apr 02, 2024 am 11:31 AM

多模态文档理解能力新SOTA!阿里mPLUG团队发布最新开源工作mPLUG-DocOwl1.5,针对高分辨率图片文字识别、通用文档结构理解、指令遵循、外部知识引入四大挑战,提出了一系列解决方案。话不多说,先来看效果。复杂结构的图表一键识别转换为Markdown格式:不同样式的图表都可以:更细节的文字识别和定位也能轻松搞定:还能对文档理解给出详细解释:要知道,“文档理解”目前是大语言模型实现落地的一个重要场景,市面上有很多辅助文档阅读的产品,有的主要通过OCR系统进行文字识别,配合LLM进行文字理

手机怎么安装chatgpt 手机怎么安装chatgpt Mar 05, 2024 pm 02:31 PM

安装步骤:1、在ChatGTP官网或手机商店上下载ChatGTP软件;2、打开后在设置界面中,选择语言为中文;3、在对局界面中,选择人机对局并设置中文相谱;4、开始后在聊天窗口中输入指令,即可与软件进行交互。

刚刚发布!一键生成动漫风格图片的开源模型 刚刚发布!一键生成动漫风格图片的开源模型 Apr 08, 2024 pm 06:01 PM

向大家介绍一个最新的AIGC开源项目——AnimagineXL3.1。这个项目是动漫主题文本到图像模型的最新迭代,旨在为用户提供更加优化和强大的动漫图像生成体验。在AnimagineXL3.1中,开发团队着重优化了几个关键方面,以确保模型在性能和功能上达到新的高度。首先,他们扩展了训练数据,不仅包括了之前版本中的游戏角色数据,还加入许多其他知名动漫系列的数据纳入训练集中。这一举措丰富了模型的知识库,使其能够更全面地理解各种动漫风格和角色。AnimagineXL3.1引入了一组新的特殊标签和美学标

单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源 Apr 29, 2024 pm 04:55 PM

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名

See all articles