目录
形状、纹理、材质自定义
研究方法与过程
作者介绍
首页 科技周边 人工智能 一块GPU,每秒20个模型!英伟达新玩具用GET3D造元宇宙

一块GPU,每秒20个模型!英伟达新玩具用GET3D造元宇宙

Apr 12, 2023 pm 11:16 PM
gpu 模型 英伟达

Abracadabra!

在2D生成3D模型上,英伟达亮出了自称「世界级」研究:GET3D。

图片

通过2D图像训练后,该模型可生成具有高保真纹理和复杂几何细节的3D形状。

图片

究竟有多厉害?

形状、纹理、材质自定义

GET3D之所以得名,是因为它能够生成显式纹理3D网格(Generate Explicit Textured 3D meshes )。

图片

论文地址:https://arxiv.org/pdf/2209.11163.pdf

也就是说,它创建的形状是三角形网格的形式,就像纸模型一样,上面覆盖着纹理材质。

关键是,这个模型可以生成多种多样,且高质量的模型。

比如,椅子腿上的各种轮子;汽车的车轮,灯和车窗;动物的耳朵、角;摩托车的后视镜,车轮胎上的纹理;高跟鞋,人类衣服...

街道两旁的独特建筑,不同的车辆呼啸而过,还有不同的人群穿梭而过...

若想通过手动建模做出同样的3D虚拟世界非常耗时。

尽管先前的3D生成AI模型虽然比手动建模更快,但它们在生成更多丰富细节模型的能力还是欠缺。

图片

即便是,最新的逆向渲染方法也只能基于从各个角度拍摄的2D图像生成3D对象,开发人员一次只能构建一个3D物体。

GET3D可就不一样了。

开发者可以轻松地将生成模型导入到游戏引擎、3D建模器和电影渲染器中,对它们进行编辑。

当创建者将GET3D生成的模型导出到图形应用程序,他们就可以在模型所在的场景中移动或旋转时应用逼真的照明效果。

如图所示:

图片

另外,GET3D还可以做到文本引导形状生成。

通过使用英伟达的另一个AI工具StyleGAN-NADA,开发人员可以使用文本提示为图像添加特定的风格。

比如,可以将渲染后的汽车变成一辆烧毁的汽车或出租车

将一个普通的房子改造成砖房、着火的房子,甚至是鬼屋。

图片

或者将老虎纹、熊猫纹的特色应用在任何动物身上...

图片

简直就是辛普森一家的「动物森友会」...

英伟达介绍,在单个英伟达GPU上训练,GET3D每秒可以生成大约20个对象。

在此,它所学习的训练数据集越大、越多样化,输出的多样性和详细程度就越高。

英伟达称,研究团队仅用2天时间,就使用A100 GPU在大约100万张图像上训练了模型。

研究方法与过程

GET3D框架,主要作用是合成有纹理的三维形状。

生成过程分为两个部分:第一部分是几何分支,可以输出任意拓扑结构的表面网格。另一部分则是纹理分支,它会产生一个纹理场,由此可以在表面点上进行查询。

图片

在训练过程中,一个可微分光栅化器被用来高效渲染所产生的纹理网格,并渲染成二维的高分辨率图像。整个过程是可分的,允许通过传播二维判别器的梯度,从图像中进行对抗性训练。

之后,梯度从二维判别器传播到两个发生器分支。

研究人员又进行了广泛的实验来评估该模型。他们首先将GET3D生成的三维纹理网格的质量与现有的使用ShapeNet和Turbosquid数据集生成的做比较。

接下来,研究人员根据对比结果在之后的研究中对模型进行了优化,并做了更多实验。

GET3D模型在几何形状和纹理能够实现相分离。

如图,在每一行中展示了由相同的几何隐藏代码生成的形状,同时更改了纹理代码。

在每一列中展示了由相同的纹理隐藏代码生成的形状,同时更改了几何代码。

另外,研究人员在每一行中相同的纹理隐藏代码生成的形状,从左到右插入几何隐藏代码。

并由相同的几何隐藏代码生成的形状,同时从上到下插入纹理代码。结果显示,每个插值对生成模型都是有意义的。

图片

在每个模型的子图中,GET3D能够在所有类别的不同形状之间的生成实现平滑过渡。

图片

在每一行中,通过添加一个小噪声来局部扰乱隐藏代码。通过这种方式,GET3D能够在局部生成外观相似但略有差异的形状。

图片

研究人员指出,未来版本的GET3D可以使用摄像机姿态估计技术,让开发人员训练模型的现实世界的数据,而不是合成数据集。

未来,通过改进,开发人员可以在各种3D形状上一次性训练GET3D,而不需要一次在一个对象类别上训练它。

英伟达人工智能研究副总裁Sanja Fidler表示,

GET3D让我们离人工智能驱动的3D内容创作大众化又近了一步。它即时生成带纹理3D形状的能力可能会改变开发人员的游戏规则,帮助他们用各种有趣的对象快速填充虚拟世界。

作者介绍

论文一作Jun Gao是多伦多大学机器学习小组的博士生,导师是Sanja Fidler。

除了学历优异以外,他还是英伟达多伦多人工智能实验室的研究科学家。

他的研究主要集中在深度学习(DL),目标直指结构化几何表示学习。同时,他的研究还从人类对2D和3D图像、视频的感知中获得见解。

这么一位优秀的高材生,来自北京大学。他于2018年本科毕业,获得学士学位。在北大期间,他和王立威教授一同工作。

毕业后他还在斯坦福大学、MSRA和英伟达进行过实习。

Jun Gao的导师同样是业内翘楚。

Fidler是多伦多大学的副教授,Vector研究所的一名教师,同时,她还是该研究所的联合创始成员之一。

教学之外,她还是英伟达公司的人工智能研究副总裁,领导着多伦多的一个研究实验室。

在来到多伦多之前,她是芝加哥丰田技术研究所的研究助理教授。该研究所位于芝加哥大学校园内,算是个学术机构。

Fidler的研究领域集中在计算机视觉(CV)和机器学习(ML),聚焦于CV和图形学的交叉领域、三维视觉,以及三维重建与合成,还有图像注释的互动方法等等。

以上是一块GPU,每秒20个模型!英伟达新玩具用GET3D造元宇宙的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Beelink EX显卡扩展坞承诺GPU性能零损失 Beelink EX显卡扩展坞承诺GPU性能零损失 Aug 11, 2024 pm 09:55 PM

最近推出的 Beelink GTi 14 的突出特点之一是迷你 PC 下方有一个隐藏的 PCIe x8 插槽。该公司在发布时表示,这将使外部显卡更容易连接到系统。 Beelink有n

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K 英伟达对话模型ChatQA进化到2.0版本,上下文长度提到128K Jul 26, 2024 am 08:40 AM

开放LLM社区正是百花齐放、竞相争鸣的时代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等许多表现优良的模型。但是,相比于以GPT-4-Turbo为代表的专有大模型,开放模型在很多领域依然还有明显差距。在通用模型之外,也有一些专精关键领域的开放模型已被开发出来,比如用于编程和数学的DeepSeek-Coder-V2、用于视觉-语言任务的InternVL

AMD FSR 3.1 推出:帧生成功能也适用于 Nvidia GeForce RTX 和 Intel Arc GPU AMD FSR 3.1 推出:帧生成功能也适用于 Nvidia GeForce RTX 和 Intel Arc GPU Jun 29, 2024 am 06:57 AM

AMD 兑现了 24 年 3 月的最初承诺,将于今年第二季度推出 FSR 3.1。 3.1 版本的真正与众不同之处在于帧生成方面与升级方面的解耦。这使得 Nvidia 和 Intel GPU 所有者可以应用 FSR 3。

'AI 工厂”将推动软件全栈重塑,英伟达提供 Llama3 NIM 容器供用户部署 'AI 工厂”将推动软件全栈重塑,英伟达提供 Llama3 NIM 容器供用户部署 Jun 08, 2024 pm 07:25 PM

本站6月2日消息,在目前正在进行的黄仁勋2024台北电脑展主题演讲上,黄仁勋介绍生成式人工智能将推动软件全栈重塑,展示其NIM(NvidiaInferenceMicroservices)云原生微服务。英伟达认为“AI工厂”将掀起一场新产业革命:以微软开创的软件行业为例,黄仁勋认为生成式人工智能将推动其全栈重塑。为方便各种规模的企业部署AI服务,英伟达今年3月推出了NIM(NvidiaInferenceMicroservices)云原生微服务。NIM+是一套经过优化的云原生微服务,旨在缩短上市时间

全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 Jun 01, 2024 pm 04:41 PM

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐LLM方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管RLHF方法的结果很出色,但其中涉及到了一些优化难题。其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。近段时间已有一些研究者探索了更简单的离线算法,其中之一便是直接偏好优化(DPO)。DPO是通过参数化RLHF中的奖励函数来直接根据偏好数据学习策略模型,这样就无需显示式的奖励模型了。该方法简单稳定

无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct 无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

LLM全搞定!OmniDrive:集3D感知、推理规划于一体(英伟达最新) LLM全搞定!OmniDrive:集3D感知、推理规划于一体(英伟达最新) May 09, 2024 pm 04:55 PM

写在前面&笔者的个人理解这篇论文致力于解决当前多模态大语言模型(MLLMs)在自动驾驶应用中存在的关键挑战,即将MLLMs从2D理解扩展到3D空间的问题。由于自动驾驶车辆(AVs)需要针对3D环境做出准确的决策,这一扩展显得尤为重要。3D空间理解对于AV来说至关重要,因为它直接影响车辆做出明智决策、预测未来状态以及与环境安全互动的能力。当前的多模态大语言模型(如LLaVA-1.5)通常仅能处理较低分辨率的图像输入(例如),这是由于视觉编码器的分辨率限制,LLM序列长度的限制。然而,自动驾驶应用需

See all articles