目录
高概率" >高概率
兴奋的斑点" >兴奋的斑点
展望未来" >展望未来
产生问题" >产生问题
首页 科技周边 人工智能 启发现代人工智能艺术的物理原理,探索生成式人工智能的可能性才刚开始

启发现代人工智能艺术的物理原理,探索生成式人工智能的可能性才刚开始

Apr 12, 2023 pm 11:58 PM
人工智能 艺术

让 OpenAI 创建的图像生成系统 DALL·E 2 绘制一幅「金鱼在海滩上啜饮可口可乐」的图画,它会吐出超现实的图像。该程序在训练期间会遇到海滩、金鱼和可口可乐的图像,但它不太可能看到三者同时出现的图像。然而,DALL·E 2 可以将这些概念组合成可能让达利感到自豪的东西。

DALL·E 2 是一种生成模型——一种尝试使用训练数据生成在质量和多样性方面可与数据相媲美的新事物的系统。这是机器学习中最困难的问题之一,到达这一点是一段艰难的旅程。

第一个重要的图像生成模型使用了一种称为神经网络的人工智能方法——一种由多层计算单元组成的程序,称为人工神经元。但即使他们的图像质量变得更好,模型也被证明不可靠且难以训练。与此同时,一个强大的生成模型——由一位对物理学充满热情的博士后研究员创建——处于休眠状态,直到两名研究生取得技术突破,使这只野兽复活。

DALL·E 2 就是这样一头野兽。使 DALL·E 2 的图像以及其竞争对手 Stable Diffusion 和 Imagen 的图像成为可能的关键洞察力来自物理学世界。支撑它们的系统被称为扩散模型,在很大程度上受到非平衡热力学的启发,非平衡热力学支配着流体和气体扩散等现象。「有很多技术最初是由物理学家发明的,现在在机器学习中非常重要,」OpenAI 的机器学习研究员 Yang Song 说。

这些模型的力量震撼了行业和用户。「对于生成模型来说,这是一个激动人心的时刻,」加州理工学院计算机科学家、英伟达机器学习研究高级主管 Anima Anandkumar 说。

她说,虽然扩散模型创建的逼真图像有时会延续社会和文化偏见,但「我们已经证明,生成模型对下游任务很有用,[这些]提高了预测人工智能模型的公平性。」

高概率

为了理解如何为图像创建数据,让我们从仅由两个相邻灰度像素组成的简单图像开始。我们可以根据每个像素的阴影(从 0 为全黑到 255 为全白)用两个值来完整描述此图像。您可以使用这两个值将图像绘制为二维空间中的一个点。

如果我们将多个图像绘制为点,则可能会出现聚类——某些图像及其对应的像素值比其他图像更频繁地出现。现在想象平面上方有一个曲面,曲面的高度对应于簇的密度。该曲面绘制出概率分布。你最有可能在曲面最高部分下方找到单个数据点,在表面的最低部分下面很少找到数据点。

图片

DALL·E 2 制作了这些「金鱼在海滩上啜饮可口可乐」的图像。这个由 OpenAI 创建的程序可能从未遇到过类似的图像,但仍然可以自行生成它们。

现在你可以使用此概率分布来生成新图像。你需要做的就是随机生成新的数据点,同时遵守更频繁地生成更多可能数据的限制——这个过程称为「采样」分布。每个新点都是一个新图像。

同样的分析适用于更逼真的灰度照片,例如每张一百万像素。只是现在,绘制每个图像需要的不是两个轴,而是一百万个。此类图像的概率分布将是一些复杂的百万加一维曲面。如果你对该分布进行采样,你将产生一百万个像素值。将这些像素打印在一张纸上,图像很可能看起来像原始数据集中的照片。

生成建模的挑战是为构成训练数据的某些图像集学习这种复杂的概率分布。该分布之所以有用,部分原因是它捕获了有关数据的广泛信息,部分原因是研究人员可以结合不同类型数据(例如文本和图像)的概率分布来构成超现实的输出,例如金鱼在海滩上啜饮可口可乐。「你可以混合和匹配不同的概念……以创建训练数据中从未见过的全新场景,」Anandkumar 说。

2014 年,一种称为生成对抗网络 (GAN) 的模型成为第一个生成逼真图像的模型。「太激动了,」Anandkumar 说。但是 GAN 很难训练:它们可能无法学习完整的概率分布,并且可能只能从分布的一个子集生成图像。例如,在各种动物图像上训练的 GAN 可能只生成狗的图片。

机器学习需要一个更强大的模型。Jascha Sohl-Dickstein 的工作受到物理学的启发,他将提供一个答案。

图片

Jascha Sohl-Dickstein。

兴奋的斑点

在 GAN 发明前后,Sohl-Dickstein 是斯坦福大学的一名博士后,研究生成模型,对非平衡热力学也有兴趣。物理学的这个分支研究不处于热平衡状态的系统——那些在内部以及与环境交换物质和能量的系统。

一个说明性的例子是一滴蓝色墨水通过一个水容器扩散。起初,它在一个地方形成一个黑色的斑点。此时,如果你想计算在容器的某个小体积中找到墨水分子的概率,你需要一个概率分布来清晰地模拟墨水开始扩散之前的初始状态。但这种分布很复杂,因此很难从中抽样。

然而,最终,墨水扩散到整个水中,使水变成淡蓝色。这可以用简单的数学表达式描述的更简单、更均匀的分子概率分布。非平衡热力学描述了扩散过程中每一步的概率分布。至关重要的是,每一步都是可逆的——通过足够小的步骤,你可以从一个简单的分布返回到一个复杂的分布。

图片

Jascha Sohl-Dickstein 基于扩散原理创建了一种新的生成建模方法。——Asako Miyakawa

Sohl-Dickstein 使用扩散原理开发了生成建模算法。这个想法很简单:该算法首先将训练数据集中的复杂图像转化为简单的噪声——类似于从一滴墨水变成漫射淡蓝色的水——然后教系统如何反转这个过程,将噪声转化为图像。

这是它的工作原理。首先,该算法从训练集中获取图像。和以前一样,假设百万像素中的每一个都有一些值,我们可以将图像绘制为百万维空间中的一个点。该算法在每个时间步向每个像素添加一些噪声,相当于墨水在一个小时间步后的扩散。随着这个过程的继续,像素值与它们在原始图像中的值的关系越来越小,像素看起来更像是一个简单的噪声分布。(该算法还在每个时间步将每个像素值向原点微移一点点,即所有这些轴上的零值。这种微移可以防止像素值变得太大以至于计算机无法轻松处理。)

对数据集中的所有图像执行此操作,百万维空间中点的初始复杂分布(无法轻易描述和采样)变成围绕原点的简单、正态分布的点。

Sohl-Dickstein 说:「转换序列非常缓慢地将你的数据分布变成一个大噪音球。」 这个「正向过程」为你提供了一个可以轻松采样的分布。

接下来是机器学习部分:为神经网络提供从正向传递中获得的噪声图像,并训练它预测更早一步出现的噪声较小的图像。一开始它会出错,所以你调整网络的参数,让它做得更好。最终,神经网络可以可靠地将代表简单分布样本的噪声图像一直转换为代表复杂分布样本的图像。

经过训练的网络是一个成熟的生成模型。现在你甚至不需要原始图像来进行正向传递:你有简单分布的完整数学描述,所以你可以直接从中采样。神经网络可以将这个样本——本质上只是静态的——变成类似于训练数据集中图像的最终图像。

Sohl-Dickstein 回忆起他的扩散模型的第一个输出。「你会眯着眼睛说,[我认为那个彩色斑点看起来像一辆卡车,]」他说。「我花了很多个月的时间盯着不同的像素模式,试图看到我喜欢的结构,[这比我以前得到的更有条理。] 我非常兴奋。」

展望未来

Sohl-Dickstein 在 2015 年发表了他的扩散模型算法,但仍然远远落后于 GAN 的能力。虽然扩散模型可以对整个分布进行采样,并且永远不会只吐出图像的一个子集,但图像看起来更糟,而且过程太慢了。「我认为当时这并不令人兴奋,」Sohl-Dickstein 说。

图片

论文地址:​https://doi.org/10.48550/arXiv.1503.03585​

需要两名既不了解 Sohl-Dickstein 也不了解对方的学生,才能将最初工作中的点点滴滴与 DALL·E 2 等现代扩散模型联系起来。第一个是 Song,当时他是斯坦福大学的博士生。2019 年,他和他的导师发表了一种构建生成模型的新方法,该方法不估计数据(高维表面)的概率分布。相反,它估计了分布的梯度(将其视为高维表面的斜率)。

图片

Yang Song 帮助提出了一种通过训练网络有效地解读嘈杂图像来生成图像的新技术。

Song 发现,如果他首先用增加的噪声水平扰动训练数据集中的每张图像,然后让他的神经网络使用分布梯度预测原始图像,从而有效地对其进行去噪,他的技术效果最好。一旦经过训练,他的神经网络就可以从简单的分布中抽取噪声图像,并逐步将其转换回代表训练数据集的图像。图像质量很好,但他的机器学习模型采样速度非常慢。而且他在不了解 Sohl-Dickstein 的工作的情况下做到了这一点。「我根本不知道扩散模型,」Song 说。「在我们 2019 年的论文发表后,我收到了 Jascha 发来的电子邮件。他向我指出,[我们的模型] 有着非常紧密的联系。」

2020 年,第二名学生看到了这些联系,并意识到 Song 的工作可以改进 Sohl-Dickstein 的扩散模型。Jonathan Ho 最近在加州大学伯克利分校完成了生成建模方面的博士研究,但他仍在继续研究。「我认为这是机器学习中数学上最美丽的分支学科,」他说。

Ho 利用 Song 的一些想法和神经网络领域的其他进展重新设计和更新了 Sohl-Dickstein 的扩散模型。「我知道为了引起社区的注意,我需要让模型生成漂亮的样本,」他说。「我确信这是我当时能做的最重要的事情。」

他的直觉是正确的。Ho 和他的同事在 2020 年的一篇题为「去噪扩散概率模型」的论文中宣布了这种新的和改进的扩散模型。它很快成为一个里程碑,以至于研究人员现在将其简称为 DDPM。根据一项图像质量基准——将生成图像的分布与训练图像的分布进行比较——这些模型匹配或超过了所有竞争生成模型,包括 GAN。没过多久,大公司就注意到了这一点。现在,DALL·E 2、Stable Diffusion、Imagen 和其他商业模型都使用了 DDPM 的一些变体。

图片

Jonathan Ho 和他的同事结合了 Sohl-Dickstein 和 Song 的方法,使现代扩散模型成为可能,例如 DALL·E 2。

现代扩散模型还有一个关键要素:大型语言模型 (LLM),例如 GPT-3。这些是基于互联网文本训练的生成模型,用于学习单词而不是图像的概率分布。2021 年,Ho(现在是一家隐形公司的研究科学家)和他在 Google Research 的同事 Tim Salimans 以及其他地方的其他团队展示了如何将来自 LLM 和图像生成扩散模型的信息结合起来使用文本(例如, 「金鱼在海滩上啜饮可口可乐」)来指导扩散过程,从而引导图像生成。这种「引导扩散」过程是文本到图像模型成功的背后原因,例如 DALL·E 2。

「它们远远超出了我最疯狂的期望,」Ho 说。「我不会假装我看到了这一切。」

产生问题

尽管这些模型非常成功,但 DALL·E 2 及其同类产品的图像仍远非完美。大型语言模型可以在它们生成的文本中反映文化和社会偏见,例如种族主义和性别歧视。那是因为他们接受了从互联网上摘录的文本的训练,而且这些文本通常包含种族主义和性别歧视的语言。在此类文本上学习概率分布的 LLM 充满了相同的偏见。扩散模型也在从互联网上获取的未经整理的图像上进行训练,这些图像可能包含类似的有偏见的数据。难怪将法学硕士与当今的传播模型相结合有时会产生反映社会弊病的图像。

Anandkumar 有亲身经历。当她尝试使用基于扩散模型的应用程序生成自己的风格化头像时,她感到震惊。「这么多 [许多] 图像都被高度性感化了,」她说,「而它呈现给男性的东西却并非如此。」 她并不孤单。

可以通过整理和过滤数据(考虑到数据集的庞大性,这是一项极其困难的任务)或通过检查这些模型的输入提示和输出来减少这些偏差。「当然,没有什么能代替仔细和广泛的安全测试」一个模型,Ho 说。「这对该领域来说是一个重要的挑战。」

尽管存在这些顾虑,Anandkumar 仍然相信生成建模的力量。「我真的很喜欢 Richard Feynman 的名言:[我无法创造的东西,我不理解,] 」她说。加深的理解使她的团队能够开发生成模型,例如,生成用于预测任务的代表性不足的类别的合成训练数据,例如用于面部识别的较深肤色,有助于提高公平性。生成模型还可以让我们深入了解我们的大脑如何处理嘈杂的输入,或者它们如何唤起心理意象并考虑未来的行动。构建更复杂的模型可以赋予人工智能类似的能力。

Anandkumar 说:「我认为,我们才刚刚开始探索生成式人工智能的可能性。」

以上是启发现代人工智能艺术的物理原理,探索生成式人工智能的可能性才刚开始的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles