目录
1.使用无代码工具的人工智能的易用性和民主化
2.工具越来越复杂,文本越来越实用
3.安全问题增加
首页 科技周边 人工智能 2022年医疗保健领域的人工智能发展

2022年医疗保健领域的人工智能发展

Apr 13, 2023 am 08:07 AM
人工智能 医疗保健

2022年医疗保健领域的人工智能发展

一项名为“2022年医疗保健人工智能调查”对来自全球的300多名受访者进行了调查,以更好地了解定义医疗保健人工智能的挑战、成就和用例。在第二年的调查中,其结果没有显著变化,但也有了一些有趣的趋势,预示着未来几年的动态。虽然这种演变的某些方面是积极的(人工智能的民主化),但其他方面却面临风险(更大的攻击面)。以下是企业需要了解的三个趋势。

1.使用无代码工具的人工智能的易用性和民主化

根据调研机构Gartner公司的预测,到2025年,企业开发的70%的应用程序将使用无代码或低代码技术(2020年不到25%)。虽然低代码能够简化程序人员的工作量,但无需数据科学干预的无代码解决方案将对企业及其他领域产生更大的影响。

对于医疗保健行业说,这意味着超过一半(61%)的医疗保健人工智能调查受访者将临床医生确定为他们的目标用户,其次是医疗保健支付者(45%)和医疗IT公司(38%)。这与医疗保健特定人工智能应用程序的重大发展和投资以及开源技术的可用性相结合,表明将有更广泛的行业采用。

这很重要,将代码交到医护人员手中,就像Excel或Photoshop等常用办公工具将改善人工智能一样。除了使该技术更易于使用之外,它还可以实现更准确和可靠的结果,因为现在由医学专业人员(而不是软件专业人员)掌管。这些变化不会在一夜之间发生,但领域专家作为人工智能主要用户的增加是向前迈出的一大步。

2.工具越来越复杂,文本越来越实用

在其他令人鼓舞的发现中,涉及人工智能工具的进步以及用户深入研究特定模型的愿望。当被问及他们计划在2022年底之前采用哪些技术时,调查中的技术领导者提到了数据集成(46%)、商业智能(44%)、自然语言处理(43%)和数据注释(38%)。文本现在是人工智能应用程序中最有可能使用的数据类型,对自然语言处理(NLP)和数据注释的重视表明更复杂的人工智能技术正在兴起。

这些工具支持临床决策支持、药物发现和医疗政策评估等重要活动。在经历了两年的疫情之后,随着研究机构致力于开发新疫苗并揭示如何在大规模事件发生之后更好地支持医疗保健系统的需求,这些领域的关键进展显而易见。通过这些例子,很明显医疗保健业对人工智能的使用与其他行业有很大不同,需要采用不同的方法。

因此,技术领导者和受访者都将医疗保健特定模型和算法的可用性作为评估本地安装的软件库或SaaS解决方案的最重要要求,这不足为奇。从风险投资前景以及人工智能用户的需求来看,医疗保健特定模型会在未来几年内增长。

3.安全问题增加

随着人工智能在过去一年中取得的所有进展,其也开辟了一系列新的攻击媒介。当被问及受访者使用哪些类型的软件来构建他们的人工智能应用程序时,最受欢迎的选择是本地安装的商业软件(37%)和开源软件(35%)。最值得注意的是,与去年的调查相比,云计算服务的使用率下降了12%(30%),这很可能是由于对数据共享的隐私担忧。

此外,大多数受访者(53%)选择依靠自己的数据来验证模型,而不是第三方或软件供应商的指标。68%的受访者表示明显倾向于使用内部评估和自行调整模型。同样,通过围绕医疗保健数据处理的严格控制和程序,人工智能用户在可能的情况下希望将操作保持在内部是显而易见的。

但无论软件偏好或用户如何验证模型,不断升级的医疗保健安全威胁都可能产生重大影响。虽然其他关键基础设施服务也面临挑战,但医疗保健出现数据违规事件的后果超出了声誉和财务损失。数据丢失或篡改医院设备可能是生与死的区别。

随着开发人员和投资者努力将技术掌握在用户手中,人工智能有望实现更显著的增长。随着人工智能变得更加广泛可用,并且随着模型和工具的改进,安全和道德将成为人们关注的重要领域。了解人工智能在医疗保健领域在今年如何发展的,以及这对该行业的未来意味着什么,这将是一件重要的事情。

以上是2022年医疗保健领域的人工智能发展的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 布局 AI 等市场,格芯收购泰戈尔科技氮化镓技术和相关团队 Jul 15, 2024 pm 12:21 PM

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G

See all articles