目录
什么是损失函数?
损失函数与度量指标
为什么要用损失函数?
回归问题
1、均方误差(MSE)
2、平均绝对误差(MAE)
3、均方根误差(RMSE)
4、平均偏差误差(MBE)
5、Huber损失
二元分类
6、最大似然损失(Likelihood Loss/LHL)
7、二元交叉熵(BCE)
8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)
多分类
9、交叉熵(CE)
10、Kullback-Leibler 散度 (KLD)
首页 后端开发 Python教程 十个常用的损失函数解释以及Python代码实现

十个常用的损失函数解释以及Python代码实现

Apr 13, 2023 am 09:37 AM
python 算法 损失函数

什么是损失函数?

损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损失函数是针对单个样本的,而代价函数是针对所有样本的。

损失函数与度量指标

一些损失函数也可以被用作评价指标。但是损失函数和度量指标(metrics)有不同的目的。虽然度量指标用于评估最终模型并比较不同模型的性能,但损失函数在模型构建阶段用作正在创建的模型的优化器。损失函数指导模型如何最小化误差。

也就是说损失函数是知道模型如何训练的,而度量指标是说明模型的表现的。

为什么要用损失函数?

由于损失函数测量的是预测值和实际值之间的差距,因此在训练模型时可以使用它们来指导模型的改进(通常的梯度下降法)。在构建模型的过程中,如果特征的权重发生了变化得到了更好或更差的预测,就需要利用损失函数来判断模型中特征的权重是否需要改变,以及改变的方向。

我们可以在机器学习中使用各种各样的损失函数,这取决于我们试图解决的问题的类型、数据质量和分布以及我们使用的算法,下图为我们整理的10个常见的损失函数:

十个常用的损失函数解释以及Python代码实现

回归问题

1、均方误差(MSE)

均方误差是指所有预测值和真实值之间的平方差,并将其平均值。常用于回归问题。

def MSE (y, y_predicted):sq_error = (y_predicted - y) ** 2sum_sq_error = np.sum(sq_error)mse = sum_sq_error/y.sizereturn mse
登录后复制

2、平均绝对误差(MAE)

作为预测值和真实值之间的绝对差的平均值来计算的。当数据有异常值时,这是比均方误差更好的测量方法。

def MAE (y, y_predicted):error = y_predicted - yabsolute_error = np.absolute(error)total_absolute_error = np.sum(absolute_error)mae = total_absolute_error/y.sizereturn mae
登录后复制

3、均方根误差(RMSE)

这个损失函数是均方误差的平方根。如果我们不想惩罚更大的错误,这是一个理想的方法。

def RMSE (y, y_predicted):sq_error = (y_predicted - y) ** 2total_sq_error = np.sum(sq_error)mse = total_sq_error/y.sizermse = math.sqrt(mse)return rmse
登录后复制

4、平均偏差误差(MBE)

类似于平均绝对误差但不求绝对值。这个损失函数的缺点是负误差和正误差可以相互抵消,所以当研究人员知道误差只有一个方向时,应用它会更好。

def MBE (y, y_predicted):error = y_predicted - ytotal_error = np.sum(error)mbe = total_error/y.sizereturn mbe
登录后复制

5、Huber损失

Huber损失函数结合了平均绝对误差(MAE)和均方误差(MSE)的优点。这是因为Hubber损失是一个有两个分支的函数。一个分支应用于符合期望值的MAE,另一个分支应用于异常值。Hubber Loss一般函数为:

十个常用的损失函数解释以及Python代码实现

这里的

十个常用的损失函数解释以及Python代码实现

def hubber_loss (y, y_predicted, delta)delta = 1.35 * MAEy_size = y.sizetotal_error = 0for i in range (y_size):erro = np.absolute(y_predicted[i] - y[i])if error < delta:hubber_error = (error * error) / 2else:hubber_error = (delta * error) / (0.5 * (delta * delta))total_error += hubber_errortotal_hubber_error = total_error/y.sizereturn total_hubber_error
登录后复制

二元分类

6、最大似然损失(Likelihood Loss/LHL)

该损失函数主要用于二值分类问题。将每一个预测值的概率相乘,得到一个损失值,相关的代价函数是所有观测值的平均值。让我们用以下二元分类的示例为例,其中类别为[0]或[1]。如果输出概率等于或大于0.5,则预测类为[1],否则为[0]。输出概率的示例如下:

[0.3 , 0.7 , 0.8 , 0.5 , 0.6 , 0.4]

对应的预测类为:

[0 , 1 , 1 , 1 , 1 , 0]

而实际的类为:

[0 , 1 , 1 , 0 , 1 , 0]

现在将使用真实的类和输出概率来计算损失。如果真类是[1],我们使用输出概率,如果真类是[0],我们使用1-概率:

((1–0.3) 0.7 0.8 (1–0.5) 0.6 (1–0.4)) / 6 = 0.65

Python代码如下:

def LHL (y, y_predicted):likelihood_loss = (y * y_predicted) + ((1-y) * (y_predicted))total_likelihood_loss = np.sum(likelihood_loss)lhl = - total_likelihood_loss / y.sizereturn lhl
登录后复制

7、二元交叉熵(BCE)

这个函数是对数的似然损失的修正。对数列的叠加可以惩罚那些非常自信但是却错误的预测。二元交叉熵损失函数的一般公式为:

— (y . log (p) (1 — y) . log (1 — p))

让我们继续使用上面例子的值:

输出概率= [0.3、0.7、0.8、0.5、0.6、0.4]

实际的类= [0,1,1,0,1,0]

— (0 . log (0.3) (1–0) . log (1–0.3)) = 0.155

— (1 . log(0.7) + (1–1) . log (0.3)) = 0.155

— (1 . log(0.8) + (1–1) . log (0.2)) = 0.097

— (0 . log (0.5) + (1–0) . log (1–0.5)) = 0.301

— (1 . log(0.6) + (1–1) . log (0.4)) = 0.222

— (0 . log (0.4) + (1–0) . log (1–0.4)) = 0.222

那么代价函数的结果为:

(0.155 + 0.155 + 0.097 + 0.301 + 0.222 + 0.222) / 6 = 0.192

Python的代码如下:

def BCE (y, y_predicted):ce_loss = y*(np.log(y_predicted))+(1-y)*(np.log(1-y_predicted))total_ce = np.sum(ce_loss)bce = - total_ce/y.sizereturn bce
登录后复制

8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)

Hinge Loss被翻译成铰链损失或者合页损失,这里还是以英文为准。

Hinge Loss主要用于支持向量机模型的评估。错误的预测和不太自信的正确预测都会受到惩罚。 所以一般损失函数是:

l(y) = max (0 , 1 — t . y)

这里的t是真实结果用[1]或[-1]表示。

使用Hinge Loss的类应该是[1]或[-1](不是[0])。为了在Hinge loss函数中不被惩罚,一个观测不仅需要正确分类而且到超平面的距离应该大于margin(一个自信的正确预测)。如果我们想进一步惩罚更高的误差,我们可以用与MSE类似的方法平方Hinge损失,也就是Squared Hinge Loss。

如果你对SVM比较熟悉,应该还记得在SVM中,超平面的边缘(margin)越高,则某一预测就越有信心。如果这块不熟悉,则看看这个可视化的例子:

十个常用的损失函数解释以及Python代码实现

如果一个预测的结果是1.5,并且真正的类是[1],损失将是0(零),因为模型是高度自信的。

loss= Max (0,1 - 1* 1.5) = Max (0, -0.5) = 0

十个常用的损失函数解释以及Python代码实现

如果一个观测结果为0(0),则表示该观测处于边界(超平面),真实的类为[-1]。损失为1,模型既不正确也不错误,可信度很低。

loss = max (0 , 1–(-1) * 0) = max (0 , 1) = 1

十个常用的损失函数解释以及Python代码实现

如果一次观测结果为2,但分类错误(乘以[-1]),则距离为-2。损失是3(非常高),因为我们的模型对错误的决策非常有信心(这个是绝不能容忍的)。

loss = max (0 , 1 — (-1) . 2) = max (0 , 1+2) = max (0 , 3) = 3

python代码如下:

#Hinge Lossdef Hinge (y, y_predicted):hinge_loss = np.sum(max(0 , 1 - (y_predicted * y)))return hinge_loss#Squared Hinge Lossdef SqHinge (y, y_predicted):sq_hinge_loss = max (0 , 1 - (y_predicted * y)) ** 2total_sq_hinge_loss = np.sum(sq_hinge_loss)return total_sq_hinge_loss
登录后复制

多分类

9、交叉熵(CE)

在多分类中,我们使用与二元交叉熵类似的公式,但有一个额外的步骤。首先需要计算每一对[y, y_predicted]的损失,一般公式为:

十个常用的损失函数解释以及Python代码实现

如果我们有三个类,其中单个[y, y_predicted]对的输出是:

十个常用的损失函数解释以及Python代码实现

这里实际的类3(也就是值=1的部分),我们的模型对真正的类是3的信任度是0.7。计算这损失如下:

Loss = 0 . log (0.1) + 0 . log (0.2) + 1 . log (0.7) = -0.155

为了得到代价函数的值,我们需要计算所有单个配对的损失,然后将它们相加最后乘以[-1/样本数量]。代价函数由下式给出:

十个常用的损失函数解释以及Python代码实现

使用上面的例子,如果我们的第二对:

Loss = 0 . log (0.4) + 1. log (0.4) + 0. log (0.2) = -0.40

那么成本函数计算如下:

十个常用的损失函数解释以及Python代码实现

使用Python的代码示例可以更容易理解:

def CCE (y, y_predicted):cce_class = y * (np.log(y_predicted))sum_totalpair_cce = np.sum(cce_class)cce = - sum_totalpair_cce / y.sizereturn cce
登录后复制

10、Kullback-Leibler 散度 (KLD)

又被简化称为KL散度,它类似于分类交叉熵,但考虑了观测值发生的概率。 如果我们的类不平衡,它特别有用。

十个常用的损失函数解释以及Python代码实现

def KL (y, y_predicted):kl = y * (np.log(y / y_predicted))total_kl = np.sum(kl)return total_kl
登录后复制

以上就是常见的10个损失函数,希望对你有所帮助。

以上是十个常用的损失函数解释以及Python代码实现的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

See all articles