目录
什么是人工智能?
人工智能数据处理的关键步骤
AI数据过滤示例
网络安全领域的人工智能
人工智能的优点和缺点
AI准确性vs资源需求
静态和持续训练
在哪里可以找到AI网络安全
制造和自动化工厂的OT风险管理
何时应该使用人工智能网络安全
总结
首页 科技周边 人工智能 网络安全中的人工智能:优点和缺点

网络安全中的人工智能:优点和缺点

Apr 13, 2023 pm 12:16 PM
人工智能 网络安全

网络安全中的人工智能:优点和缺点

我们可以使用人工智能,以比人类更快的速度自动执行复杂的重复性任务。

人工智能技术可以对复杂、重复的输入进行逻辑排序。这就是人工智能被用于人脸识别和自动驾驶汽车的原因。但这种能力也为人工智能网络安全铺平了道路。这对于评估复杂组织中的威胁特别有用。当业务结构不断变化时,管理员通常无法识别弱点。

此外,企业的网络结构也变得越来越复杂。这意味着网络犯罪分子可以利用更多的漏洞来对付我们。我们可以在高度自动化的制造3.0企业或石油和天然气行业等综合公司中看到这一点。为此,各种安全公司开发了人工智能网络安全工具来帮助保护企业。

本文将深入探讨什么是人工智能,以及其是如何应用于网络安全,还将了解这项有前途的技术的优点和缺点。下面,先来看看什么是人工智能!

什么是人工智能?

人工智能是一种利用统计加权矩阵的合理化方法。这个矩阵也被称为神经网络。可以先把这个网络想象成一个决策矩阵,其中的节点对每个过滤过程都有加权偏差。神经网络将接收一个预编译数据数据库。这些数据还将包含人工智能解决的潜在问题的答案。这样,人工智能就会产生偏见。

例如,一个包含不同图像的数据库。假设其具有人脸图像和其他西瓜图像。此外,每个图像都有一个标签来检查每个项目。当人工智能“学习”其的猜测是否正确时,系统会增加节点权重。这个过程一直持续到系统达到预定义的错误率。这通常被称为深度学习,指的是创建深度的决策层。

接下来,看看用于处理数据的步骤。

人工智能数据处理的关键步骤

可以将整个数据工作流浓缩为以下流程:

1.输入传感器接收数据。

2.数据通过CPU,并被重定向到人工智能进程。

3.数据进入人工智能解决方案的统计加权矩阵。每个节点都处理这些信息,然后使用每个各自的过滤器做出决定。

4.数据到达统计加权矩阵的最后一个节点。这决定了最终的决定。

然而,这个过程与深度学习略有不同。第1步将包括来自预编译数据库的数据,并用正确的响应标记。此外,深度学习将重复步骤1到4,以达到预定义的容错值。

下面,通过一个如何处理AI数据的示例来看看这一点。

AI数据过滤示例

假设一张图片到达了一个AI节点。该节点会将数据过滤为可用的格式,如255灰度。然后,将运行一个脚本来识别特性。如果这些特性与筛选器中的其他特性相匹配,则节点可以做出决定。例如,其会表明找到的是一张脸还是一个西瓜。

然后,数据转到下一个节点。这个特定节点可以有一个滤色器来确认第一个决策。这个过程一直持续到数据到达最后一个节点。届时,人工智能将做出最终决定,确保找到的是一张脸还是一个西瓜。

重要的是,人工智能系统总是会有一定程度的误差。没有什么是绝对正确的,永远不会。但有时,错误百分比是可以接受的。

了解人工智能的工作原理后,下面来看看人工智能的网络安全解决方案吧。

网络安全领域的人工智能

人工智能网络安全解决了在复杂环境中自动评估威胁的需求。具体来说,这里有两个人工智能网络安全中的AI用例:

1.检测异常。人工智能通常会检测网络日常运行中的异常情况。这有助于了解用户访问网络的时间和地点。网关设备还具有用于分析的AI集成。如果出现异常行为,一些解决方案会锁定用户。其他解决方案仅发送警报。

2.分类数据。人工智能实际上是一种分类实用程序。这加快了恶意软件或不良行为的筛选过程。这在拥有大量数据的组织中很有用。

这就是人工智能在网络安全方面的两大主要用途,接下来看看其的优点和缺点!

人工智能的优点和缺点

如前所述,人工智能有很多好处。其能运行重复性的任务来识别异常或对数据进行分类。也就是说,一些大的缺点可能会抵消其的好处。那来看看缺点。

AI准确性vs资源需求

第一个缺点是人工智能网络安全解决方案的准确性。这种准确性还取决于许多因素。这包括神经网络的大小和为过滤而定义的决策。其还取决于达到预定义的错误率所需的迭代次数。

假设有一个三层的决策树。每一层对于每个决策路径都有多个节点。即使这是一个相当简单的矩阵,也需要大量的计算。系统的有限资源会损害解决方案的智能。

人工智能网络安全解决方案提供商可能会阻碍其解决方案的智能/准确性,以满足目标人群。但有时候,问题不在于智商。相反,其具有低延迟和安全漏洞。在寻找人工智能网络安全解决方案时,需考虑其在网络中的安全性。

静态和持续训练

人工智能统计加权矩阵一旦训练完毕,通常不会在服务中再训练。能发现这是由于硬件中缺乏可用的处理资源造成的。有时候,系统学到的东西会使情况变得更糟,从而降低效率。相反,人类是迭代学习的。这意味着会造成很多事故。因此,解决方案提供商必须确保软件在使用过程中满足规范要求。

网络安全通常需要更新以应对新的攻击。为此,需要大量的力量来训练AI。此外,人工智能网络安全供应商将需要定期更新,以应对网络威胁。

也就是说,人工智能网络安全解决方案的人工智能组件是用于对数据进行分类和评估基线数据中的异常情况。因此,其不会导致恶意软件列表更新出现问题。这意味着仍然可以使用人工智能网络安全。

看完了人工智能网络安全的优点和缺点,也来看看这项技术的一些用途吧!

在哪里可以找到AI网络安全

如前所述,高度自动化的企业网络安全最薄弱。一般来说,自动化环境会重叠信息技术(IT)、运营技术(OT)和物联网(IoT)。这是为了提高生产力,降低产品的单位成本,并在竞争中削弱竞争力。

但这也会产生漏洞。为此,人工智能网络安全对于发现这些公司的潜在漏洞很有帮助。解决方案要么通知管理员,要么自动应用补丁。

然而,这可能还不够。网络犯罪分子目前正在攻击大型、高度整合的公司。为此,他们利用了没有安全性的OT。这个OT是为有线网络发送命令到硬件,如工厂设备。这意味着其从未构成安全漏洞。但如今,攻击者使用OT来访问网络的其余部分,或使工厂设备离线。

制造和自动化工厂的OT风险管理

由于上述原因,OT风险管理工具变得越来越流行。这些系统有效地获取生产环境的实时克隆,然后进行无数次的模拟来寻找漏洞。

系统的AI部分通常会发现漏洞。在这种情况下,管理员会提供解决方案。OT风险管理软件会随着制造工厂安排的变化而持续运行,以满足订单、项目或供应需求。

在这种情况下,人工智能系统使用防病毒列表中的已知恶意软件,试图找到进入系统的入口路径。这项任务需要复杂系统的自动重复功能,这非常适合人工智能。

那么,什么时候应该实施人工智能网络安全?

何时应该使用人工智能网络安全

如上所述,使用制造业和工厂设备的企业应该使用人工智能网络安全。在大多数情况下,还需要寻找一个OT风险管理解决方案,以减少与OT相关的风险。

若企业使用IoT和IT,那么也可以使用人工智能网络安全。这样,便可降低网络被攻击的风险。物联网设备通常会以低于竞争对手的价格出售,因此还可以省去增加足够安全措施的成本。

最后,即使企业只使用IT,也能使用AI。人工智能可以帮助评估不规则流量,从而保护网关。此外,还可以利用AI的数据分析。这样,就可以知道是否有人在恶意使用硬件。

综上,便是关于人工智能网络安全的所有内容,简单总结一下!

总结

我们可能会在任何需要自动化重复任务的地方使用人工智能。人工智能还有助于对复杂任务做出决策。这就是为什么许多网络安全解决方案提供商使用人工智能的原因。事实上,这些提供商的工具有助于应对高度复杂且安全性极差的系统的挑战。

我们总是可以从人工智能网络安全中受益,无论业务技术的集成程度如何。AI功能也非常适合使用智能操作对数据进行分类。这样,就可以加快搜索恶意软件的速度。人工智能网络安全也有利于发现网络的异常使用。

以上是网络安全中的人工智能:优点和缺点的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles