目录
化学反应机理的传统阐明方式" >化学反应机理的传统阐明方式
AI 改变动力学分析领域" >AI 改变动力学分析领域
具体研究" >具体研究
首页 科技周边 人工智能 机器学习模型以出色的精度进行有机反应机理分类

机器学习模型以出色的精度进行有机反应机理分类

Apr 13, 2023 pm 03:04 PM
机器学习 模型

化学反应的发现不仅受到获得实验数据的速度的影响,还受到化学家理解这些数据的难易程度的影响。揭示新的催化反应的机理基础是一个特别复杂的问题,通常需要计算和物理有机化学的专业知识。然而,研究催化反应很重要,因为它们代表了最有效的化学过程。

近日,来自英国曼彻斯特大学(UoM)化学系的 Burés 和 Larrosa 报告了一种机器学习模型,展示了可以训练深度神经网络模型来分析普通动力学数据并自动阐明相应的机理类别,而无需任何额外的用户输入。该模型以出色的精度识别各种类型的机理。

研究结果表明,人工智能引导的机理分类是一种强大的新工具,可以简化和自动化机理阐明。预计这项工作将进一步推动全自动有机反应发现和开发的发展。

该研究以「Organic reaction mechanism classification using machine learning」为题,于 2023 年 1 月 25 日发布在《Nature》上。

图片

论文链接:​https://www.nature.com/articles/s41586-022-05639-4​

化学反应机理的传统阐明方式

确定将底物转化为产品所涉及的基本步骤的确切顺序,对于合理改进合成方法、设计新催化剂和安全扩大工业过程至关重要。为了阐明反应机理,需要收集多个动力学曲线,人类专家必须对数据进行动力学分析。尽管反应监测技术在过去几十年中有了显著改进,以至于动力学数据收集可以完全自动化,但机理阐明的基础理论框架并没有以同样的速度发展。

当前的动力学分析流程包括三个主要步骤:从实验数据中提取动力学特性,预测所有可能机理的动力学特性,以及将实验提取的特性与预测的特性进行比较。

一个多世纪以来,化学家们一直在从反应速率中提取机理信息。今天仍在使用的一种方法是评估反应的初始速率,重点关注最初百分之几的起始物质的消耗。这种方法很受欢迎,因为在大多数情况下,反应物浓度随时间的变化在反应开始时是线性的,因此分析起来很简单。虽然很有见解,但这种技术忽略了在大部分时间过程中发生的反应速率和浓度的变化。

在过去的几十年里,已经发展出了更先进的方法来评估整个反应过程中反应组分的浓度。数学技术进一步促进了这些方法,这些技术从反应动力学图中揭示了参与一个反应步骤的组分的数量(也称为反应组分的顺序)。这些技术肯定会继续为化学反应性提供深刻的见解,但它们局限于分析反应组分的顺序,而不是提供一个更全面的机理假设来描述催化系统的动力学行为。

图片

图 1:动力学分析的相关性和最新技术。(来源:论文)

AI 改变动力学分析领域

机器学习正在彻底改变化学家解决问题的方式,从设计分子和路线到合成分子,再到理解反应机理。Burés 和 Larrosa 现在通过机器学习模型,根据模拟的反应动力学特征对反应进行分类,为动力学分析带来了这场革命。

在这里,研究人员证明了一个基于模拟动力学数据训练的深度学习模型能够正确地阐明来自时间浓度分布的各种机理。机器学习模型消除了速率定律推导和动力学性质提取和预测的需要,从而简化了动力学分析,极大地促进了所有合成实验室对反应机理的阐明。

由于对所有可用动力学数据进行了整体分析,该方法提高了询问反应曲线的能力,消除了动力学分析过程中潜在的人为错误,并扩大了可分析的动力学范围,包括非稳态(包括活化和失活过程)和可逆反应。这种方法将是对目前可用的动力学分析方法的补充,并将在最具挑战性的情况下特别有用。

具体研究

研究人员定义了 20 类反应机理,并为每一类制定了速率定律。每种机理都由一组动力学常数(k1, … kn) 和化学物质浓度的常微分方程(ODE)函数进行数学描述。然后,他们求解了这些方程式,生成了数百万个描述反应物衰变和产物生成的模拟。这些模拟动力学数据用于训练学习算法以识别每个机理类别的特征签名。生成的分类模型使用动力学曲线作为输入,包括初始和时间浓度数据,并输出反应的机理类别。

图片

图 2:机理范围和数据构成。(来源:论文)

深度学习模型的训练通常需要大量数据,当必须通过实验收集这些数据时,这可能会带来相当大的挑战。

Burés 和 Larrosa 训练算法的方法避免了产生大量实验动力学数据的瓶颈。在案例中,研究人员能够通过数值求解 ODE 集来生成 500 万个动力学样本用于模型的训练和验证,而无需使用稳态近似。

模型包含 576,000 个可训练参数,并结合使用两种类型的神经网络:(1) 长短期记忆神经网络,一种用于处理时间数据序列(即时间浓度数据)的循环神经网络;(2) 全连接神经网络,用于处理非时间数据(即每次动力学运行中催化剂的初始浓度和长短期记忆提取的特征)。该模型输出每种机理的概率,概率总和等于 1。

研究人员使用模拟动力学曲线的测试集评估了训练模型,并证明它正确地将这些曲线分配给机理类,准确率为 92.6%。

图片

图 3:机器学习模型在测试集上的性能,每个动力学曲线有六个时间点。(来源:论文)

即使有意引入「嘈杂」数据,该模型也表现良好,这意味着它可用于对实验数据进行分类。

图片

图 4:误差和数据点数量对机器学习模型性能的影响。(来源:论文)

最后,研究人员使用先前报道的几个实验动力学曲线对他们的模型进行了基准测试。预测的机理与早期动力学研究的结论非常吻合。在某些情况下,该模型还识别了在原始工作中没有检测到的机理细节。对于一个具有挑战性的反应,该模型提出了三个非常相似的机理类别。然而,作者正确地说,这个结果不是一个错误,而是他们模型的一个特征,因为它表明需要进一步的具体实验来探索机理。

图片

图 5:具有实验动力学数据的案例研究。(来源:论文)

总之,Burés 和 Larrosa 开发了一种方法,不仅可以自动执行从动力学研究中推导出机理假设的漫长过程,还可以对具有挑战性的反应机理进行动力学分析。与数据分析中的任何技术进步一样,由此产生的机理分类应被视为需要进一步实验支持的假设。误解动力学数据的风险始终存在,但该算法能够在少量实验的基础上以高精度识别正确的反应路径,可以说服更多研究人员尝试动力学分析。

因此,这种方法可以普及和推动动力学分析纳入反应开发流程,尤其是当化学家对机器学习算法越来越熟悉时。

以上是机器学习模型以出色的精度进行有机反应机理分类的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

一文带您了解SHAP:机器学习的模型解释 一文带您了解SHAP:机器学习的模型解释 Jun 01, 2024 am 10:58 AM

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 Jun 01, 2024 pm 04:41 PM

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐LLM方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管RLHF方法的结果很出色,但其中涉及到了一些优化难题。其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。近段时间已有一些研究者探索了更简单的离线算法,其中之一便是直接偏好优化(DPO)。DPO是通过参数化RLHF中的奖励函数来直接根据偏好数据学习策略模型,这样就无需显示式的奖励模型了。该方法简单稳定

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

可解释性人工智能:解释复杂的AI/ML模型 可解释性人工智能:解释复杂的AI/ML模型 Jun 03, 2024 pm 10:08 PM

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct 无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动 May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

See all articles