人工智能在农业的应用
农业是人类赖以生存的根本,在三次产业中占据基础性地位,对经济社会的稳定与发展至关重要。然而,随着人口的快速增长、耕地面积的逐步缩减以及城镇化的加速推进,农业面临的挑战日益严峻。为应对这种挑战,国内外都在探索通过信息技术来促进农业提质增效,其中以人工智能为基础的智慧农业新模式发展迅速。人工智能正在颠覆农业领域,这并不是夸大其词,我们所熟知的农业正在被重新定义。农业中的人工智能可以分为五类:
1、农业机器人
现在许多技术人员都在开发自主机器人并对其进行编程,以处理重要的农业任务,比如用比人类更高的产能和更快的速度收割庄稼,自动化的出现有助于解决劳动力短缺的问题。
2、作物和土壤监测
人工智能可以帮助农民找到灌溉漏洞,优化灌溉系统,并衡量作物灌溉方法的有效性。随着世界人口的增长和干旱的影响越来越大,节约用水变得越来越重要。有效用水可以极大地影响农场的利润,并有助于全球节约用水的努力。哥伦布表示,线性人工智能程序被用来计算特定田地或作物达到预期产量水平所需的最佳水量。
3、智能种植
在传统农业中,需要耗费大量的人力、物力;而搭载人工智能技术将有助于缓解农民的负担,比如说通过人工智能管理灌溉和用水、根据图像的养分和肥料使用解决方案,甚至通过人工智能,可以预测农作物正确的收获时间,这大大降低土地对劳动力的需求量。
4、牲畜监测
能够对牲畜进行高水平的监测,使生产者相对于尚未投资人工智能增强农业技术的竞争对手具有优势。哥伦布说,农民可以监测食物摄入量、活动水平和生命体征,以更好地了解更好地生产牛奶或肉类的最佳条件。实时健康观察还使农民能够迅速将感染传染病的牲畜与健康的牲畜区分开来,并迅速处理伤害和牲畜意外行为。
5、无人机的使用
到2027年,农业领域的无人机市场预计将达到4.8亿美元,而无人机的使用旨在帮助用户提高作物产量和降低成本。首先编程无人机的路线,一旦部署该设备将利用计算机视觉记录图像,并将捕获的数据上传,通过算法来整合和分析捕获的图像和数据,以提供详细的分析报告。
我国人工智能与农业领域深度融合还面临着多重挑战,比如说,农村网络基础设施薄弱、应用于农业技术还处于基础阶段、人工智能农业机器人的研发还不是很成熟,在投入使用过程中难免会出现或多或少的问题等等,这就要求有关部门应从基础设施、技术供给、产业需求等多方面入手,全面促进人工智能与农业领域的深度融合,探索现代农业高质量发展的有效路径。在支撑能力方面,着力强化农村网络基础设施及农业信息服务平台建设;在技术供给方面,持续提升农业领域人工智能技术供给水平;在产业需求方面,大力培养农民应用人工智能的意愿与能力,不断地进行技术指导和相关知识的普及。
相信,在不久的将来,随着人工智能技术的不断发展,它在农业领域的大规模应用将最终实现。人工智能前程似锦,期待未来,我国农业将迈入智能化的崭新时代。
以上是人工智能在农业的应用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
